欢迎来到专业的教师资源平台!

小数乘小数教学反思

时间:2020-11-05 16:20:02 教学反思 我要投稿

小数乘小数教学反思

  身为一位优秀的老师,我们要在课堂教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,来参考自己需要的教学反思吧!下面是小编为大家收集的小数乘小数教学反思,仅供参考,大家一起来看看吧。

小数乘小数教学反思

小数乘小数教学反思1

  新课程标准提倡数学生活化。对此的片面理解就是数学知识要和生活联系。于是,摒弃了课本中的例题,以为创设了生活情境就是新理念。再加上设计时,只考虑到了:例题中的3。6×2。8和2。8×1。15要体现小数乘法的两种情况,我在设计例题时以超市购物为例,刚开始在设计时有些数据太大了,没考虑到实际作用,幸好后来得到了及时的改正。

  这节课设计的意图是力求让学生通过“探索”,自主地发现规律。我们的学生已经习惯了回答“是不是?”“对不对?”之类对思维很低要求的问题,一旦遇到“说说你是怎么想的?”“这些算式有什么共同的规律呢?”一类需要将他们的思维过程充分展示出来的问题,就显得手足无措了。

  教材中没有安排小数乘整数的口算,而实际在口算中由于数目比较小,计算结果可以比较快速的反馈,易于检验学生计算的正确与否,同时可以帮助学生理清计算小数乘整数的计算思路,所以在计算中我增加了小数乘整数的口算练习,让学生说出自己的想法,同时用小数乘整数的意义检验方法的正确性,让所有的学生都知道计算小数乘整数可以看成整数的计算。

  我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。

小数乘小数教学反思2

  小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足,《小数乘小数》教学反思。其实质就是根据积的变化规律而归纳而成的。

  首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?

  学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数,教学反思《《小数乘小数》教学反思》。

  接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。

  在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。

  在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!

小数乘小数教学反思3

  小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,有大部分的学生根据前面的小数乘整数的计算方法迁移归纳出以下的内容:看因数一共有几位小数,积就是几位小数。其实这两种方法都是一致的,其实质就是根据积的变化规律而归纳面成的。因而我本课的重点分为以下三点进行。

  一、知识的迁移过程。

  通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?

  学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。

  二、知识的归纲过程

  我们知道,当一个知识点刚刚有一个兴奋的苗头的时候,教师如果就顺着这个苗头直接就说出结果的话,那效果可能不明显,因为这个时候学生还没有把概念真正形成,因为他们只是通过一道0.8x1.2得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。

  三、知识的巩固过程

  1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。

  2、突出口算为小数乘法简便运算打基础。

  如在课堂上布置了0.25x4、0.125x0.8、0.25x40、12.5x8、1。25x8等多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。

  在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!

小数乘小数教学反思4

  小数乘小数的的乘法笔算是在学生学习了小数点位置移动的变化规律以及小数乘整数的基础上来进行教学的,对于学生来说,有了一定的基础性的认识,但是在实际笔算过程中,仍然会出现这样那样的问题。

  通过这节课的教学,我认识到,孩子们的潜力还没有被挖掘出来。对于五年级的学生来说,有了四年小学生活的经验,但是,我班的学生还不能在表达上大胆而放松,正是由于他们过多地关注了表达本身而忽视了需要表达的内容,才使得表达缺乏深度,教师没能让学生充分地把自己的表达欲望激发出来,很多学生欲言又止,不想说、不想表达还不同程度地存在。

  另一方面,在学习方法的指导上,教师还缺乏足够的应对策略,不能及时地对学生的各种情况进行有效地引领与点拔,对于教学重点和难点的解决还存在着对学生了解不够深入,没能完全放手,在思想认识上,还不能更坚决地执行让学生自我认识的深化才是教学成败的关键,也只有学生自我认识到的东西,才能真正被学生所采用,只有学生认可的东西,才是孩子们记忆最深刻,想法最多的东西。

  再有,对于课堂中的学习节奏还存在着节奏慢,不能满足整节课学习需求的缺陷,在一定程度上,制约着教师和学生的思考的深度和思维的宽度和广度。

  在今后的教学中,要努力做到几点。

  一是大胆相信学生,把真正地主动权交给学生,让学生真正地表达自己的思想和思维,让学生在课堂上能真正地动起来,既要激发学生的表达意识,更应该让学生体验到学习中思维的`碰撞对自身学习的巨大的促进力量,同时,让学生形成一种大胆表达自己的习惯,这种习惯不是一个或几个同学的表达,而是全体学生的积极参与和表达,让孩子们在课堂上的表达成为一种常态,更成为学生之间互相学习,师生共促的一个良好的平台。同时,注重对学生语言的逻辑性的训练,让学生懂得,只有思维紧凑,才会让自己的学习效率更高,学习效果更好,珍惜课堂上的每一分每一秒,争取有效地课堂时间。

  二是在小组建设上努力打造好基层的学习小组。关注每一个组的小组建设,同时,注重小组长的带头和引领作用,充分发挥每一个同学的不同作用。让小组的作用更有力地发挥。

  当然,所有这些,都需要教师有颗不断关注的心态,让自己成为孩子们的良师益友,只有如此才能真正地让自己的课堂活起来,让自己的课堂成为更充实的课堂。

小数乘小数教学反思5

  教材分析

  本节课是学习小数乘小数的计算方法,它是在已学的整数乘法和小数和整数相乘的基础上进行教学的,其教学生长点是整数乘法。它既是小数除法学习的基础,与是小数四则混合运算和分数小数四则混合运算学习的基础。然而,按整数乘法相乘后怎样得到原来的积,则是需要经历一个严密的推理过程,教材安排两次探究活动;

  第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;

  第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究后比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算方法。

  学情分析

  本班有51名学生,其中男的有27人,女的有24人。从上学期的期末检测来看,大部分学生基础知识掌握得比较好,但也有10位同学基础比较差,最简单的整数乘法都不会计算。另外学生的自主学习能力一般,有合作学习的习惯。同时,在学习小数乘小数之前,学生们已经学习了整数乘法和小数与整数相乘,这对学习小数乘小数已有了些基础,现在来学小数乘小数应该一不很难。

  教学目标

  1、让学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确地进行相关的计算。

  2、 让学生在探索计算方法的过程中进一步增强探索数学知识的能力。培养学生的推理能力和概括能力。

  3、 让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的兴趣,增强学好数学的信心。

  教学重点和难点

  本节课的教学重点是让学生通过主动探索,理解并掌握小数乘小数的计算方法。难点是理解把小数乘法转化成整数乘法后确定积的小数点位置的道理。

小数乘小数教学反思6

  小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。其实质就是根据积的变化规律而归纳而成的。

  首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?

  学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。

  接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。

  在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。

  在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!

小数乘小数教学反思7

  本节课的内容是在学生掌握了小数乘整数的基础上进行教学的。通过对比建立新旧知识间的联系,学生学得比较轻松,正确率也较高。

  成功之处:

  在知识障碍出引发学生的思考,着力解决当两个因数都是小数时,积怎样处理点小数点。通过复习小数乘整数的内容,让学生进一步明确计算方法,特别是小数点的处理。在新知学习中,着重让学生观察因数的小数位数与积的小数位数之间有什么关系,从而得出因数中一共有几位小数,就从积的右边数出几位点上小数点。

  不足之处:

  1.列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因数的小数位数,从而出现了虎头蛇尾的错误频出。

  2.计算出错仍是学生计算的拦路虎,该进位不进位,该对齐数位不对齐。

  再教设计:

  1.加强计算的练习,特别是加强口算题卡的练习,强化口算能力。

  2.加强学困生的辅导,在课堂上多关注,多留给他们答题的机会。

小数乘小数教学反思8

  《小数乘小数》是五年级上册第一单元的内容。这一内容的教学重点是小数乘法的计算法则;教学难点是小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

  小数乘小数是在学生学习了小数乘整数的基础上进行教学的。我以为这一知识点学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况却并不尽如人意。在课后练习中,学生出现错误的现象比较多:1、方法上的错误:例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别扩大10倍,这样乘得的积就会扩大100倍,为了使积不变,最后还要将积缩小100倍;但是在计算的过程中,部分学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题。还有的学生把小数乘法与小数加法点小数点的方法混淆在一起,或者只看其中一个因数的小数位数。2、计算中关于0的问题;部分学生在积的末尾有零时,先划去0再点小数点;部分学困生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。3、计算上的失误:因数的数位较多时,个别学生直接写出得数(如2.15×2.1的竖式下直接写出4.515,没有计算的过程),做完竖式,不写横式的得数等。

  面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思:本单元不是我想象的那么简单,既要注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。为此,我决定从以下几方面加以改进:

  1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。

  2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。

  3、小数加减法与小数乘法的对比练习要加强。

小数乘小数教学反思9

  教学内容:苏教版国标本五年级数学第86——87页例1、“试一试”、“练一练”、练习十五1——3题。

  教学目标:

  1、让学生通过主动探索,理解小数乘小数的计算方法,能正确地进行相关的计算。

  2、让学生在主动探索的过程中,进一步增强探索数学知识规律的能力。

  3、让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,从而激发学习数学的兴趣,提高学好数学的自信心。

  教学过程:

  一、情景导入,引入新课:

  1、课件出示例1小明房间的平面图。

  提问:从图中你可以得到哪些信息?想解决什么数学问题?

  可以怎样列式?

  根据学生的回答,出示以下问题:

  (1)房间的面积有多大?

  3.6×2.8

  (2)阳台的面积有多大?

  2.8×1.15

  提问:这两道算式和我们以前学过的小数乘法有什么不同?

  2、揭示并板书课题:小数乘小数。

  二、合作探究,掌握算法。

  1、初步探究小数乘小数的计算方法。

  (1)估算初步探索:

  师:请你先估计一下3.6×2.8的积大约是多少?

  小组合作:先把自己的想法说给同桌听,再全班交流。

  把3.6和2.8都看作3,3×3=9,面积在9平方米左右。

  把3.6看作4,2.8看作3,4×3=12,面积应该比12平方米小一点。

  ……

  (2)笔算进行探索。

  师:通过刚才的估算,我们已经知道了3.62.8的积大概在9的左右。那么实际的结果是多少呢?我们还应该学会计算的方法。通常用列竖式的方法进行计算。

  进一步启发:回想一下以前计算小数乘法的方法,我们是否可以先把这两个小数都看作整数来计算,这样你会做吗?

  让学生先把这两个小数都看作整数来计算。

  讨论:这样后,得到的积是不是原来的积?为什么不是?那主要的变化在哪里?

  4人小组讨论,然后全班交流。

  学生再阅读课本86页,进一步弄清课本的竖式图示的意思:

  原来两个小数都当作整数相当于都乘了10,积是原来的100倍,只要把现在得到的积除以100,就能得到正确的积。

  问:正确的结果与我们估算的结果接近吗?能正确估算结果的同学真棒。

  2、进一步探究小数乘小数的计算方法。

  教学“试一试”

  (1)根据刚才你解决问题的方法,你能计算出2.8×1.15的结果吗?你能借87页上的示意图来说一说你的想法吗?

  学生独立完成计算后与同桌交流想法。

  (2)全班交流。把两个因数都看成整数,相当于这两个因数乘了1000,得到的积就是原来积的1000倍。要使现在的积等于原来的积,只要用3220除于1000。

  问:现在的积可以化简吗?结果是多少?

  三、概括推理,总结方法。

  1、引导学生比较例题与“试一试”的计算过程。

  观察例1中的因数和积,你发现了它们之间有什么关系?

  再观察“试一试”中的因数和积,你发现了它们之间有什么关系?

  你从中得到了什么启发?你能说一说因数与积之间有什么关系吗?

  小结:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。

  2、引导学生总结小数乘小数的计算方法。

  师:现在你能总结出小数乘小数的计算方法了吗?

  在小组里交流你的想法。

  在全班里交流你的想法。

  (!)先按整数乘法算出积是多少。

  (2)再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  注意结果能化简的要化简。

  四、实际练习,内化理解。

  1、完成“练一练”第1题。

  学生独立练习,小组交流校对。

  2、完成“练一练”第2题。

  独立练习,指名板演。集体评讲。

  五、反思总结,深化提高。

  今天我们应用了以前原有的知识,

  通过主动积极的探索,得出了小数乘小数的计算方法。经过这个过程,你有什么体会和收获?还有什么值得探讨的地方?

  六、完成书面作业:练习十五1、2、3题。

  《小数乘小数》教学反思

  说算理在我们计算的教学中是十分重视的。的确,说算理对于学生计算的方法的掌握,逻辑思维能力的培养具有积极的作用。然而搞形式化说理,忽视学生对算理的感悟,则有害而无益,形式化说理,表面上看似乎有理有据,推理严密,但它不是建立在学生对计算过程和方法感悟的基础上进行,因而难以使学生对算理真正内化,难以使学生理解实现对所学知识的“意义建构”。

  在现行的教学中,一般是按教材的编排,采取如下方式引导学生理解小数乘法的计算方法。

  1、出示算式13.5

  ×0.5

  2、引导学生观察和以前算式有什么不同。

  3、讲算理:即13.5→扩大10倍→135

  ×0.5→扩大10倍→5

  67.5→缩小100倍→675

  然而教学效果令人十分失望。当我引导完上述的转化过程时,要求学生说说为什么这样计算,大部分学生看着板书也说得清算理。但计算时,根本未按算理去做,尤其是中差生错误百出。课后我做了认真反思,上述推算我是严格按教材设计意图、教案要求,且很有条理去教学的,为什么还是没有真正理解算理呢?那是因为教材的推算过程是为教者和学者提供一种借鉴的思路。在实际教学中不能照搬照抄,更不能把教材的思路用教师所谓的“启发”灌输给学生,否则推算说理就成为了形式。为此,我就尝试了一种自己的教法,引导学生利用已有的知识经验自主探索,在经历感悟的过程中增强对算理和算法的理解。结果按我设计的教学方法学,班级学生不仅计算方法掌握快,算理也说的非常清楚,教学效果十分令人满意。

小数乘小数教学反思10

  小数乘小数这节教学内容,是在同学们已经学习了小数乘整数的基础上进行教学的,因此,学生学习小数乘小数的计算方法显得极为轻松,他们知道小数乘整数的计算方法是先把小数看成整数与整数相乘,然后看乘数中的小数是几位小数,结果就有几位小数。在教学小数乘小数的计算方法时,我是先引导学生复习小数乘整数的计算方法,以旧引新,让学生逐步过渡到小数乘小数的学习。

  进入新课,我给学生准备了我的房间和阳台的平面图,然后提出问题:房间的面积是多少?阳台的面积是多少?从而进入小数乘小数的学习。在引导学生探索小数乘小数的计算方法时,我是先让学生估算房间的面积大约是多少,通过估算后,让学生知道房间的面积的大概数,再引导学生将小数乘整数的计算方法迁移到小数乘小数的学习中来,分别把两个因数看成整数,把4.2看成42时扩大了10倍,把3.8看成38时扩大了10倍,算出的积就扩大了100倍,要使4.2×3.8的积不变,就要把42×38的积缩小100倍。教学3.8×1.35时,列竖式计算通常把数值多的因数写在前面,这样计算起来较为简便。

  在计算时先把这两个因数看成整数与整数相乘,把1.35看成135时扩大了100倍,把3.8看成38时扩大了10倍,结果就扩大了1000倍,引导学生分别把两题计算好以后,再引导学生观察得数的小数位数与因数的位数有什么关系。让他们发现因数中一共有几位小数和结果中的小数位数相等,最后,点几名同学,让他们尝试说出小数乘小数的计算方法:先把小数乘小数看成整数与整数相乘,然后看乘数中一共有几位小数,就在结果上从右向左数几位点小数点。

小数乘小数教学反思11

  《小数乘小数练习课》教学反思在练习中有较多学生把小数乘小数的对齐方式和小数加减法小数点的对齐方式混淆,从而出错。在课堂教学中,我没有很好的抓住小数乘法和小数加法计算的根本。小数加法和小数的乘法最根本的区别就是小数点的位置情况,在开课之前我没能作出预料,可是在学生的做题中,我却发现了好多同学在学完小数乘法的末位对齐后,加减法就忘记了小数点对齐。我想如果我能在课前作好充分的预设,在课上作好强调,学生的出错率也会降低。经过此单元的教学,我找到了自己在教学中存在的问题,也为我在下一部分的教学提了一个醒,使我越来越认识到:没有精心的备课,就没有高效的课堂。没有了反思,就没有自己的教育信念,永远成不了具有自己鲜明个性的教师。

  另外,在教学小数乘小数课本第9页第10题教学反思根据分析课后练习,了解到书第9页第10题,一个非零数乘以一个比1大的数,积比原数大,乘以一个比1小的数积比原数小这一规律很重要,故把这一题作为一个例题要讲解,为了培养学生说的能力,在堂上,让学生细心的观察分析,自己总结出这个规律,在学生基本上能说出这个规律时,展示了几道可利用这一规律比较大小的题目,学生能够一眼看出,从而比较出他们的大小。

【小数乘小数教学反思】相关文章:

1.《小数乘小数》教学反思

2.《小数乘小数》教学反思

3.《小数乘小数》教学反思

4.《小数乘小数》的教学反思

5.关于《小数乘小数》教学反思

6.《小数乘小数》数学教学反思

7.小数乘整数教学反思

8.小数乘整数教学反思

  • 返回顶部