人教版六年级下册数学教案

时间:2024-07-13 21:04:03 教案

人教版六年级下册数学教案锦集6篇

  作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?以下是小编帮大家整理的人教版六年级下册数学教案6篇,欢迎阅读,希望大家能够喜欢。

人教版六年级下册数学教案锦集6篇

人教版六年级下册数学教案 篇1

  教学目标:

  1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

  2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

  3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

  重点、难点:

  1.教学重点:理解、掌握杠杆平衡的规律。

  2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

  教学准备:

  竹竿,棋子,塑料袋(多媒体课件)

  教学过程

  一、准备材料,导入活动:

  1.检查课前布置的制作工具(简单杠杆)的作业。

  学生对照制作要求,自查和同组互相检查。

  小黑板或媒体出示制作要求:

  (1)准备的竹竿长1m,尽量做到粗细均匀。

  (2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

  (3)从中点处每隔8cm做一个刻度记号,尽量等距离。

  拿出准备好的棋子和塑料袋。检查大小是否一样。

  2.揭示课题:有趣的平衡(板书)

  二、动手实践,探索规律

  1.活动一:探索特殊条件下竹竿保持平衡的规律:

  (1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

  ①学生思考,回答问题。“两边所放的棋子要同样多。”

  ②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

  (2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

  ①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

  ②演示。如:

  左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

  (3)小结:

  你有什么体会?

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

  (1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

  ①也放4个棋子行不行?会产生什么结果?

  ②应该放几个?

  “放3个。”

  (2)如果左边的塑料袋在刻度6上放1个棋子。

  ①右边的塑料袋在刻度3上放几个呢?

  学生交流,各自说出自己的见解。

  ②右边的塑料袋在刻度2上呢?

  学生不难得出结果,放3个。

  ③右边的塑料袋在刻度1上呢?

  学生不难得出结果,放6个。

  (3)小结:

  师:你有什么体会?

  左右两边棋子个数与刻度数的积要相等。

  3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

  (1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

  (2)实验活动:

  ①学生动手进行实验活动。

  ②将实验结果记录下来。

  ③教师提供表格,引导学生展开活动。

  右刻度

  所放棋子数

  乘积

  (3)汇报结果。

  学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  (4)从表中你发现刻度数和所放棋子数成什么比例?

  学生观察表中两个量的变化情况,不难发现这两种量成反比例

  三、应用规律,体会揣摩

  1.基本练习:

  母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?

  提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的`距离是x分米。可以得到方程

  60x=12×15

  解方程得x=3

  答:她坐的地方距支点3分米才能保持平衡。

  2.综合练习:

  桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

  提示:(1)根据臂长和质量成反比例

  (2)先确定每个托盘中所放砝码的总质量,在确定臂长。

  四、回顾整理,反思提升

  1.谈收获。

  师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

  2.评价。

  师:你对自己这节课的表现满意吗?

  可采取学生自评,互评,老师评价的方式进行。

  板书设计:

  有趣的平衡

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  作业设计

  基础:

  1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

  综合:

  2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

  提示:

  (1)可以像例题中一样,用列表的方法做。

  (2)根据臂长与质量成反比,列方程求解。

人教版六年级下册数学教案 篇2

  教学内容:

  教科书P23-26的内容,P24做一做,完成练习四的第1、2题。

  教学目标:

  1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

  2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

  3、养学生的自主探索意识,激发学生强烈的求知欲望。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  正确理解圆锥的组成。

  教具准备:

  每人一个圆锥,师准备一个大的圆锥模型。

  教学过程:

  一、复习

  1、圆柱体积的计算公式是什么?

  2、圆柱的特征是什么?

  二、新课

  1、圆锥的认识 (直观感受观察讨论汇报)

  (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

  (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

  (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

  (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

  2、小结

  圆锥的特征(可以启发学生总结),强调底面和高的'特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

  3、测量圆锥的高(组织学生分组进行测量)

  由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

  (1)先把圆锥的底面放平;

  (2)用一块平板水平地放在圆锥的顶点上面;

  (3)竖直地量出平板和底面之间的距离。

  4、教学圆锥侧面的展开图

  (1)学生猜想圆锥的侧面展开后会是什么图形呢?

  (2)实验来得出圆锥的侧面展开后是一个扇形。

  三、课堂练习

  1、做第24页做一做的题目。

  让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

  2、练习四的第1题。

  (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

  (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

  3.完成练习四的第2题。

  补充习题

  1出示一组图形,辨认指出哪些是圆锥。

  2出示一组图形,指出哪个是圆锥的高。

  3出示一组组合图形,指出是由哪些图形组成的。

  四、总结

  关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

  教学反思:

  观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。

人教版六年级下册数学教案 篇3

  第1课时

  圆柱的认识

  教学内容

  人教版六年级下册教材第17页圆柱的认识、第18页例1和第19页例2。

  内容简析

  圆柱的认识:通过观察物体的形状,初步认识圆柱。

  例1:通过观察圆柱,认识圆柱的侧面、底面和高。

  例2:通过观察图形,掌握圆柱的侧面展开图。

  教学目标

  1.认识圆柱的侧面、底面和高;认识圆柱的侧面展开图,理解圆柱侧面展开图与圆柱的关系。

  2.通过观察、发现、交流,让学生自主探究,掌握学习方法。

  3.培养学生观察、比较和判断的能力,以及发现问题、分析问题和解决问题的能力。

  教学重难点

  重点:使学生掌握圆柱的基本特征,理解圆柱侧面展开图与圆柱的关系。

  难点:圆柱侧面展开图与圆柱的关系,建立圆柱的空间观念。

  教法与学法

  1.在教法上,应加强直观演示和操作,利用多媒体课件从实物中抽象出圆柱的图形,帮助学生建立圆柱的表象,再让学生通过观察和操作,发现并总结出圆柱的特征。

  2.在学法上,学生把观察和动手操作相结合,通过摸一摸、量一量、画一画等实践操作活动认识圆柱的特征。本节课也应以学生自主学习为主,加强小组合作与交流。

  承前启后链

  教学过程

  一、情景创设,导入课题

  实物展示法:

  教师拿出一个做好的圆柱模型展示给学生,让学生摸一摸、看一看,初步感知圆柱;紧接着让学生观察这个圆柱的特征,观察圆柱的组成。(学生观察并独立思考)

  学生1:圆柱由三部分组成:两个圆和一个曲面。

  学生2:两个圆的面积相等。

  学生3:……

  教师表扬并鼓励学生的回答。【品析:用观察实物的方式导入,让学生看到了真实的物体,使学生对圆柱的印象更加深刻,同时用动作摸一摸更能吸引学生的学习兴趣。】

  课件展示法:

  1.课件出示“旋转门”的画面,引导联想:你看到了什么?想到了什么?(圆柱的形成)

  我看到了旋转门,想到了它转起来会形成一个圆柱。

  2.课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等。课件抽出圆柱的几何模型。

  今天我们一起来研究圆柱。(板书课题)【品析:课件展示的效果是使图形更加形象具体,学生一目了然,对于图形的认识和理解更加准确和深刻,有助于学生对于圆柱的学习和研究。】

  动手操作法:

  让学生拿出所带的硬纸板、直尺、剪刀、圆规等学具,小组合作,教师引导动手制作圆柱的模型。

  小组展示制作成果,教师给予评价。【品析:亲自动手操作制作圆柱模型不仅使学生更好地认识圆柱,而且让学生有一种喜悦的成就感。同时,对下面观察总结圆柱的组成和特征打下坚实的基础。】

  二、师生合作,探究新知

  ◎教学例1

  (1)整体感知圆柱

  ①谈谈圆柱,大家知道什么是圆柱吗?请同学说说你理解的圆柱。

  ②找找圆柱,请同学找出生活中圆柱形状的物体。

  引导学生阅读观察教材第17页几个圆柱物体的图形,认识圆柱。

  (2)教学例1:

  出示教材第18页例1:观察一个圆柱形的物体,看一看它是由哪几个部分组成的,有什么特征。

  ①认识圆柱的面。

  师:请同学摸摸自己手中圆柱的表面,说说你发现了什么。

  师:指导看书,再次观察例1中的图形,引导归纳。(上、下两个面叫作底面,它们是完全相同的两个圆;圆柱的曲面叫侧面。)

  ②认识圆柱的高

  引导学生观察例1中的圆柱,根据图形上的提示认识圆柱的高,再根据例1中的高找到自己手中圆柱的高。结合教材回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫作高)

  讨论交流:圆柱的高的特点。

  归纳小结并板书:圆柱的高有无数条,高的长度都相等。

  总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

  【品析:此教学环节先运用提问交流的方式引出认识圆柱,再联系生活实物模型,通过让学生动手操作观察自己所制作的圆柱模型来认识圆柱的组成和特征,使学生记忆更加深刻。】

  ◎教学例2:圆柱的侧面展开

  (1)动手操作:请同学分小组拿出有商标纸的圆柱形实物,把商标纸剪开,再打开,观察商标纸的形状。

  反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

  (2)操作探究:展开的长方形的长和宽与圆柱的关系。

  师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

  归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  (3)延伸发现:展开的平行四边形的`底和高及正方形的边长与圆柱的关系。

  (4)引导学生自主阅读并观察教材第19页例2。

  总结:长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  【品析:此环节在探索学习的过程中,教师为学生创设动手实践的机会,给学生足够的时间进行操作与思考,让学生获得丰富的活动体验,让学生动手操作推导出圆柱侧面展开后是一个长方形,长方形的长等于底面周长,宽等于圆柱的高。通过这样的活动体验,让学生经历学习数学的过程。】

  三、反馈质疑,学有所得

  在认识了圆柱,学习完例1、例2的基础上,让学生及时消化吸收,教师提出质疑,师生共同系统整理。

  质疑一:圆柱是由几部分组成的?圆柱有什么特征?

  师生共同总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

  质疑二:圆柱的侧面展开后是什么形状?长方形的长、宽与圆柱有什么关系?

  师生共同总结:圆柱侧面展开后得到一个长方形。长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  四、课末小结,融会贯通

  同学们,今天我们认识了圆柱,学习了圆柱的基本特征和圆柱的侧面展开图,你能说说你的收获吗?找两个学生畅谈本课时的收获,教师对其进行补充完成课堂的小结。

  师生共同总结:

  1.圆柱的组成及特点:圆柱是由3个面组成的。圆柱的上、下两个面叫作底面;圆柱周围的面(上、下面除外)叫作侧面;圆柱的两个底面之间的距离叫作高。圆柱的底面都是圆,并且大小一样。圆柱的侧面是一个曲面。

  2. 圆柱的侧面展开图:圆柱的侧面沿高展开是一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。衔接下一节课的学习内容,给大家留一个思考的话题:

  什么叫作圆柱的表面积?包括哪几个面?

  五、教海拾遗,反思提升

  回味课堂,发现亮点之处:两次质疑的讨论使学生的学习进入了二次消化吸收的过程,这次内化把圆柱的基本特征和圆柱的侧面展开图的有关知识真正掌握了。

  反思过程,有待改进之处:在教学中,应多给予学生动手实践的机会,给学生足够的时间进行操作和思考的同时,教师应进行相应的提问,这样学生学习的印象才能更深刻,学习的知识才会更扎实。

人教版六年级下册数学教案 篇4

  设计说明

  “反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

  ⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

  (3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2


10


15


20


30


60



水的高度/cm


30


20


15


10


5



  ①表中有哪两种量?

  ②水的高度是怎样随着杯子底面积的大小变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  生1:有杯子的底面积和水的高度这两种量。

  生2:杯子的底面积增大,水的'高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

  (4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学教案 篇5

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙提问导入

  1.提问激趣。

  根据“甲是乙的”,你能想到什么?

  预设

  生1:乙是甲的。

  生2:甲比乙少,乙比甲多。

  生3:甲是甲、乙之差的5倍。

  生4:甲是甲、乙之和的。

  生5:乙比甲多20%。

  ……

  2.导入新课。

  这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

  ⊙回顾与整理

  1.分数(百分数)的一般应用题。

  (1)分数(百分数)乘法应用题的特征及解题关键各是什么?

  ①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  ②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的`意义正确列式。

  (2)分数(百分数)除法应用题的特征及解题关键各是什么?

  ①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

  ②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

  (3)分数(百分数)应用题的常见题型有哪些?如何解答?

  ①求甲是乙的几分之几(百分之几):甲÷乙。

  ②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

  ③已知甲比乙多(少)几分之几,求甲:乙×。

  ④已知甲比乙多(少)几分之几,求乙:甲÷。

  ⑤求百分率。

  发芽率=×100%

  小麦的出粉率=×100%

  产品的合格率=×100%

  出勤率=×100%

  ⑥求利息:利息=本金×利率×时间

  2.分数应用题的特例——工程问题。

  (1)什么是工程问题?

  明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  (2)解决工程问题的关键是什么?

  明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

  (3)工程问题的数量关系式有哪些?

  预设

  生1:工作总量=工作效率×工作时间

  生2:工作效率=工作总量÷工作时间

  生3:工作时间=工作总量÷工作效率

  生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案 篇6

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的`平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

【人教版六年级下册数学教案】相关文章:

六年级下册人教版数学教案10-13

人教版六年级下册数学教案06-18

人教版六年级下册数学教案04-15

六年级下册人教版数学教案6篇07-31

六年级下册人教版数学教案(6篇)09-06

人教版小学六年级下册数学教案07-29

人教版六年级下册数学教案模板04-08

人教版六年级下册数学教案(7篇)08-18

人教版六年级下册数学教案10篇09-04

人教版六年级下册数学教案5篇06-14