- 因式分解教案 推荐度:
- 数学因式分解教案 推荐度:
- 相关推荐
因式分解教案汇编五篇
作为一名老师,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?下面是小编为大家收集的因式分解教案5篇,仅供参考,希望能够帮助到大家。
因式分解教案 篇1
第十五章 整式的乘除与因式分解
根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.
15.1.2 整式的加减
(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高练习:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?
2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的`值。
3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:
试化简:│a│-│a+b│+│c-a│+│b+c│
小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作 业:课本P14习题1.3:1(2)、(3)、(6),2。
《课堂感悟与探究》
因式分解教案 篇2
学习目标
1、学会用平方差公式进行因式法分解
2、学会因式分解的而基本步骤.
学习重难点重点:
用平方差公式进行因式法分解.
难点:
因式分解化简的过程
自学过程设计教学过程设计
看一看
平方差公式:
平方差公式的逆运用:
做一做:
1.填空题.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式结果为-(x-2y)(x+2y)的多项式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多项式-1+0.04a2分解因式的结果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用简便方法计算:3492-2512.
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________
Xkb1.com预习展示一:
1、下列多项式能否用平方差公式分解因式?
说说你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
应用探究:
1、分解因式
4x3y-9xy3
变式:把下列各式分解因式
①x4-81y4
②2a-8a
2、从前有一位张老汉向地主租了一块“十字型”土地(尺寸如图)。为便于种植,他想换一块相同面积的长方形土地。同学们,你能帮助张老汉算出这块长方形土地的长和宽吗?w
3、在日常生活中如上网等都需要密码.有一种因式分解法产生的密码方便记忆又不易破译.
例如用多项式x4-y4因式分解的结果来设置密码,当取x=9,y=9时,可得一个六位数的密码“018162”.你想知道这是怎么来的吗?
小明选用多项式4x3-xy2,取x=10,y=10时。用上述方法产生的密码是什么?(写出一个即可)
拓展提高:
若n为整数,则(2n+1)2-(2n-1)2能被8整除吗?请说明理由.
教后反思考察利用公式法因式分解的'题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的。
因式分解教案 篇3
第1课时
1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.
2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.
自主探索,合作交流.
1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.
2.通过对因式分解的教学,培养学生“换元”的意识.
【重点】 因式分解的概念及提公因式法的应用.
【难点】 正确找出多项式中各项的公因式.
【教师准备】 多媒体.
【学生准备】 复习有关乘法分配律的知识.
导入一:
【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.
解法1:这块场地的面积=×+×+×=++==2.
解法2:这块场地的面积=×+×+×=×=×4=2.
从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
导入二:
【问题】 计算×15-×9+×2采用什么方法?依据是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
一、提公因式法分解因式的概念
思路一
[过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.
如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).
大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.
由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.
由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.
总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.
[设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.
思路二
[过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.
多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?
结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.
[设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.
二、例题讲解
[过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【学生活动】 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.
总结:提取公因式的步骤:(1)找公因式;(2)提公因式.
容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.
教师提醒:
(1)各项都含有的字母的最低次幂的积是公因式的字母部分;
(2)因式分解后括号内的多项式的项数与原多项式的项数相同;
(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;
(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.
[设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.
2.提公因式法分解因式的'关键在于发现多项式的公因式.
3.找公因式的一般步骤:
(1)若各项系数是整系数,则取系数的最大公约数;
(2)取各项中相同的字母,字母的指数取最低的;
(3)所有这些因式的乘积即为公因式.
1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.
2.下列用提公因式法分解因式正确的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.
3.下列多项式中应提取的公因式为5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多项式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)计算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1课时
一、教材作业
【必做题】
教材第96页随堂练习.
【选做题】
教材第96页习题4.2.
二、课后作业
【基础巩固】
1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.
【答案与解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).
本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.
由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.
随堂练习(教材第96页)
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
习题4.2(教材第96页)
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).
提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.
已知方程组求7(x-3)2-2(3-x)3的值.
〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程组可得原式=12×6=6.
因式分解教案 篇4
(一)学习目标
1、会用因式分解进行简单的多项式除法
2、会用因式分解解简单的方程
(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。
(三)教学过程设计
看一看
1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:
①________________②__________
2.应用因式分解解简单的一元二次方程.
依据__________,一般步骤:__________
做一做
1.计算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成课后练习题
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________
(四)预习检测
1.计算:
2.先请同学们思考、讨论以下问题:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的.值
(3)如果AB=0,下列结论中哪个正确( )
①A、B同时都为零,即A=0,
且B=0;
②A、B中至少有一个为零,即A=0,或B=0;
(五)应用探究
1.解下列方程
2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清练习
1.计算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
因式分解教案 篇5
第6.4因式分解的简单应用
背景材料:
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的`计算,本节课的例题因式分解在数学题中的简单应用。
教材分析:
本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
【因式分解教案】相关文章:
因式分解教案06-26
(经典)因式分解教案08-23
因式分解教案(热)10-22
实用的因式分解教案三篇10-03
因式分解教案锦集八篇08-21
关于因式分解教案合集6篇07-12
因式分解教案集锦7篇07-29
因式分解教案模板集锦7篇07-12
因式分解教案范文合集8篇08-01
因式分解教案锦集7篇06-12