六年级数学下册教案

时间:2024-10-15 02:04:13 教案

六年级数学下册教案(通用15篇)

  作为一位杰出的老师,时常需要用到教案,教案有助于顺利而有效地开展教学活动。那么教案应该怎么写才合适呢?以下是小编帮大家整理的六年级数学下册教案,仅供参考,欢迎大家阅读。

六年级数学下册教案(通用15篇)

六年级数学下册教案1

  一、游戏导入

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的.数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

六年级数学下册教案2

  中位数

  教学目标

  1.理解中位数在统计学中的意义,会求中位数。

  2.了解中位数与平均数的异同,会根据数据的具体情况合理选择统计方法,体会各自的特点和作用。

  教学重点

  中位数意义的理解及求法。

  教学难点

  对一组数据的具体情况及所要分析的问题作出何种统计方法的合理选择。

  教学准备

  实物投影仪等。

  教学过程

  第一课时

  一、谈话导入

  前面我们研究了有关可能性的统计知识,这节课我们将研究新的统计知识。

  二、探究新知

  1.认识中位数

  出示五(1)班第3组同学掷沙包成绩统计表:

  问:你觉得他们掷沙包的一般水平应该是多少米?

  姓名 李明 陈东 刘云 马刚 王明 张炎 赵丽

  成绩/米 36.8 34.7 25.8 24.7 24.6 24.1 23.2

  (生可能会估计在23-25米之间或说用平均数来表示等。)

  引导如何计算平均数并计算出平均数27.7。

  问:平均数与估计数有什么差别?为什么会出现这样的.情况?

  引导观察统计表中的每个数据与平均数之间的差别。(发现有两个同学的成绩太高,而大多数同学的成绩都低于平均值。说明用平均数来表示第3组同学掷沙包的一般水平不太合适。)

  问:那用怎样的数据表示比较合适呢?为什么?(组织学生相互交流并汇报。)

  小结: 24.7这个数据,比它前面3个数小,比它后面3个数大,像这个位置处于一组数据正中间的数,我们就把它叫这组数的中位数。(板书)

  2.理解中位数

  中位数可以对事物的大体趋势进行判断和掌控,它不受偏大或偏小数据的影响,适合反映事物的一般水平。像第3组同学掷沙包成绩所用的中位数24.7,说明这一小组中超过一半的同学掷沙包成绩都能达到和超过这个水平。

  问:

  ①某班同学数学单元测试成绩的中位数是88,请说说这个数据说明什么问题?

  ②绍兴县某月的空气污染指数的中位数是65(50--100为良),又说明了什么问题?

  问:

  ①如果把25.8改为31.4,那么这组数据的平均数是否发生变化?是多少?中位数呢?为什么?

  ②如果把24.1改为22,平均数和中位数是否发生变化?为什么?

  ③如果把25.8改为24.4,平均数和中位数是否发生变化?为什么?

  ④如果把24.1改为24.8,平均数和中位数是否发生变化?为什么?

  小结:一组数据中,每个数据的大小变化,都会引起平均数的变化,平均数与每个数据的大小有关,与数据的排列位置变化无关;中位数有时与数据的大小变化无关(其所在数据的排列位置不变时),有时与数据的大小变化有关(其所在数据的排列位置变化时),中位数的变化与其所在一组数据的位置排列顺序变化有关。小顺序排列后,最中间的数据就是中位数,它不受偏大偏小数据的影响。

  3.求中位数

  出示五(2)班7名男生的跳远成绩统计表:

  问:用什么数来表示这组男生跳远的一般水平合适?为什么?

  姓名 李志强 陈文 王文贤 赵军 张鹏 刘卫华 于国庆

  成绩/米 3.06 2.90 2.74 3.52 2.83 2.89 2.78

  (1)分别求出平均数和中位数。并问中位数怎样求?(学生自主学习交流得出:是把数据按从大到小或从小到大的顺序排列求中位数。)独立完成求平均数与中位数。

  (2)把求得的平均数、中位数与各数据比较,用哪个数代表这组数据的一般水平更合适?

  (3)如果2.89m及以上为及格,有多少名同学及格了?超过半数了吗?

  (4)如果再增加一个杨冬同学的成绩2.94m,这组数据的中位数又是多少?

  根据学生出现争议问:你求出中位数了吗?怎么办呢?

  (通过前后题目的数据数对比)组织学生讨论小结:当一组数据有双数个时,中位数是中间两个数的平均数。

  学生独立计算该中位数。

  4.新知小结:

  观察比较上面几道题的中位数与平均数,说说中位数与平均数的异同。

  三、课堂总结

  通过这节课的研究与学习,你又有了什么收获?

六年级数学下册教案3

  教学内容:

  P702– 75

  教学目标:

  1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;

  2、培养学生仔细审题,认真思考,探索规律的良好习惯。

  教学重难点:

  理解正比例的意义和性质。

  教学过程:

  一、复习引入:

  我们已学了一些常见的数量关系,谁能来说一说:

  1、路程、速度、时间;

  2、单价、数量、总量;

  3、工作效率、工作时间、工作总量;

  ……

  二、先观察、后概括:

  1、例1:一列火车行驶的时间和路如下表:

  时间(小时)

  1

  2

  3

  4

  5

  6

  ……

  路程(千米)

  60

  120

  180

  240

  300

  360

  ……

  观察上表,回答下列问题:

  ⑴、表中有哪两个量是相关联的?

  ⑵、路程是怎样随着行车时间的变化而变化的?

  ⑶、相对应的路程和时间的比分别是多少?比值是多少?

  从上表可以看出:时间和路程是两种相关联的'量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。

  写成关系式是:=速度(一定)

  2、新改例2:一种铅笔,支数与总价如下表:

  支数)

  1

  2

  3

  4

  5

  6

  ……

  总价(元)

  0.3

  0.6

  0.9

  1.2

  1.5

  1.8

  ……

  由上表可以发现什么特征?

  (哪几个量是相关联的?这两个相关联的量之间有什么关系?)

  写成关系式是:=单价(一定)

  比较例1、例2,它们有什么共同点?

  概括:

  ⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。

  ⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

  = K(一定)

  (结合例1、例2说一说)

  3、练一练P75

  三、巩固练习:

  1、 P76看后判断,并连起来说一说。

  2、 P76 – 2先观察,再分析。

  3、 P76 – 3

  四、小结:

  要判断两个量是否成正比例,依据什么来判断?

  1、两个相联的量?

  2、一个量随着另一个量的变化而变化,并且它们的比值一定。

  五、作业:

  P76 3 4

六年级数学下册教案4

  教材简析:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的.体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  教 具圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。

  学 具:小刀,用土豆做成的一个圆柱体。

  教学过程:

  一、复习铺垫

  1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?

  2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?

  二、设疑揭题

  我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  [评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。

  三、新课教学

  1.探究推导圆柱的体积计算公式。

  (l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?

  (2)请学生演示教具,学生边演示边讲解切割拼合过程。

  (3)根据学生讲解,出示圆柱和长方体的彩图。

  (4)学生观察两个立体图,找出两图之间有哪些部分是相等的?

  (5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh

  (6)要用这个公式计算圆柱的体积必须知道什么条件?

  [评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]

  2.教学例4

  (1)出示例4。

  (2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?

  (3)请一名同学板演,其余同学在作业本上做。

  (4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?

  (5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。

  3.教学例5

  (1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。

  (2)出示例5,指名读题。请同学们思考解题方法。

  (3)请学生讲解题思路讨论、归纳统一的解题方法。

  (4)让学生按讨论的方法做例5。

  (5)教师评讲、总结方法。

  (6)学生讨论。比较例4、例5有哪些相同和不同点。

  [评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]

  四、新知应用

  1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。

  2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。

  (1)V=sh=5O2.1=105

  答:它的体积是105立方厘米

  (2)2.l米=210厘米

  V=sh=50210=10500

  答:它的体积是10500立方厘米。

  (3)50立方厘米=0.5立方米

  V=sh=0.52.1=1.05(立方米)

  答:它的体积是l.05立方米。

  (4)50平方厘米=0.005平方米。

  V=0。00521=0.01051

  答:它的体积是0.01051(立方米)。

  五、全课总结

  问:这节课里我们学到了哪些知识?根据学生回答教师总结。

  六、学生作业

  练习十一的第l 、2题。

  [总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]

六年级数学下册教案5

  教学目标

  1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

  2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

  教学重点

  理解对称图形的概念及性质,会找对称轴。

  教学难点

  准确找全对称轴。

  教学准备

  1、教具:投影片、图片、剪刀、彩纸。

  2、学具:蝴蝶几何图片、剪刀、白纸。

  教学过程

  (一)导入新课

  你们看这些图形好看吗?观察这些图形有什么特点?

  (图形的左边和右边相同。)

  你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

  这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

  你怎么知道图形的左边和右边相同?(看出来的……)

  还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

  你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

  (二)讲授新课

  1、对称图形的概念。

  (1)对称图形和对称轴的定义。

  以剪出的图形为例,贴在黑板上。

  问:你们剪出的这些图形都有什么特点?

  (沿着一条直线对折,两侧的图形能够完全重合。)

  师:像这样的图形就是对称图形。(板书课题)

  折痕所在的这条直线叫做对称轴(画在图上)。

  问:现在谁能准确说出什么是对称图形?什么是对称轴。

  板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

  (2)加深理解概念。

  以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

  (3)巩固概念。(投影)

  ①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

  生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

  ②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

  投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

  生边回答老师边填在投影片上,并用小棒摆出对称轴。

  回答:

  1°任意三角形不是对称图形。

  2°等腰三角形是对称图形,有一条对称轴。

  3°任意梯形不是对称图形。

  4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

  5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

  6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

  7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

  8°等腰梯形是对称图形,有一条对称轴。

  ③小结。

  问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

  ④练一练

  打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

  第2个图和第4个图较难,要引导学生用对折的'思想思考,关键找准第一条对称轴,其它就好找了。

  2、对称图形的性质。

  (1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

  (2)测量并归纳性质。

  打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)

  认真度量,结果填在书上,你发现什么?

  投影订正。填后的结果:

  A点到对称轴的距离是0。6厘米。

  B点到对称轴的距离是1。2厘米。

  C点到对称轴的距离是0。6厘米。

  D点到对称轴的距离是1。2厘米。

  问:根据测量的结果你发现什么?

  (A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0。6厘米;B,C两点到对称轴的距离也相等,都是1。2厘米。)

  问:根据度量结果,你们能总结出对称图形的性质吗?

  板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  (3)验证性质。

  量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

  看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

  (三)课堂总结

  今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

  (四)巩固练习

  1、第127页1题,画出对称轴。

  2、在你周围的物体上找出三个对称图形。

  3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

  4、你能否应用对称图特点,剪出美丽的窗花或五角星。

六年级数学下册教案6

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话导入

  同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。

  ⊙实践与操作

  1.明确提出活动要求。

  “有趣的平衡”活动由三部分组成。

  (1)制作实验用具。

  (2)探索规律,体验“杠杆原理”。

  (3)应用规律,体会反比例关系。

  2.小组合作,自主活动。(教师巡视,适当点拨)

  3.展示制作实验用具情况。

  4.汇报探索到的规律。

  观察实验二、实验三的操作过程,你有什么发现?

  预设

  生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。

  生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。

  生3:在“左边所放棋子数×左边的'刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。

  生4:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。

  5.活动小结。

  “左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。

  ⊙典型例题解析

  你能利用杠杆原理算出左边物体的质量吗?

  分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。

  解答 500×5÷2=1250(g)

  ⊙探究活动

  1.课件出示探究内容。

  星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?

  2.小组讨论、分析、解答。

  3.交流、汇报。

  (答案不唯一)

  ⊙全课总结

  通过本节课的学习,你有什么收获?

  ⊙布置作业

  找一找生活中还有哪些地方应用了杠杆原理。

  板书设计

  有趣的平衡

  有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。

六年级数学下册教案7

  教学目标

  1.使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质。

  2.能够正确地运用比的基本性质把比化成最简单的整数比。

  3.通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  教学重点和难点

  1.理解比的基本性质。

  2.正确运用比的基本性质把比化成最简单的整数比。

  教学过程设计

  (一)复习准备

  1.复习商不变的性质。

  (1)谁能很快地直接说出 4125的商?

  (2)说一说,你是怎样想的?(4125=(414)(254)=164100=16.4)

  (3)你这样做根据的是什么?(商不变的性质)它的内容是什么?

  2.复习分数的基本性质。

  (1)把下面各分数约分:

  (2)通分练习:

  (3)我们进行约分和通分根据的是什么?(分数的基本性质)它的内容是什么?

  3.求比值的练习。

  8∶4= 48∶12= 16∶8=

  24∶18= 40∶16= 15∶5=

  (二)学习新课

  1.导入新课。

  我们以前学过商不变的性质和分数的基本性质,联系这两个性质想一想:在比中又有什么规律可循?下面,我们就一起研究研究。

  2.概括比的基本性质。

  (1)创设情境。

  2∶4根据比与除法的关系可以写成2∶4=24,再想想,2∶4等于4∶8吗?你是怎么想的?(2∶4=24=(22)∶(42)=48=4∶8)

  (2)概括比的基本性质。

  ①小组讨论:看看上面的两个例子,想一想:在比中有什么样的规律?

  ②概括出比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

  强调同时、相同、0除外这几个重点的关键词语。

  (3)出示课题,这就是比的基本性质。(板书课题:比的基本性质。)

  3.应用比的基本性质化简比。

  (1)引出比的基本性质的作用。

  例 一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?

  请同学回答:有的同学说是45∶40,有的同学把45∶40化简成9∶8。

  讨论:一年级和二年级学生人数的比是写成45∶40好呢,还是写成9∶8好?(写成9∶8能使数量间的关系更加简明。)

  (2)解释什么是最简单的整数比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

  (3)化简比。

  应用比的基本性质可以把比化成最简单的整数比。

  例1 把下面各比化成最简单的整数比。

  这是一个整数比,但不是最简单的整数比,请你在练习本上把它化成最简单的整数比。

  讨论:化简整数比的方法是什么?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止。)

  这个比的前、后项是什么数?(分数)

  18)这里为什么要同乘以18?(使学生清楚地认识到,只要把比的前后项都乘以它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化成最简单的整数比。)

  讨论概括:怎样把分数比化成最简单的整数比?(一般先把比的前、后项同时乘以两个分数的分母的最小公倍数,转化为整数比,再化简成最简单的整数比)。

  请把1.25∶2化成最简单的整数比。

  讨论:如何把小数比化简成最简单的整数比?

  ④小结;应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?(第一步都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。)

  (4)区别化简比和求比值。

  ①出示练习题:化简下面各比,并求出比值。

  填表之后用投影进行订正。

  讨论:由于化简比的方法和求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,如8∶12,化简比和求比值的结果都

  比值就是求商,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的'整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

  (三)巩固反馈

  1.完成第57页的做一做。

  把下面各比化成最简单的整数比。

  请学生在练习本上独立完成,用投影仪集体订正。

  2.完成第59页第6题。

  声音在空气中每秒传播340米,有一种喷气式飞机每秒最快飞行578米,写出这种飞机最快的速度同声音速度的比,并化简。

  578∶340=17∶10

  3.填空:(口答)

  (1)85∶51=(85( ))∶(51( ))=5∶3

  (四)课堂总结

  通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

  (五)布置作业

  第58页第5题,第59页第7,8题。

  课堂教学设计说明

  复习准备中,从复习商不变的性质及分数的基本性质入手,启发学生类推出比的基本性质,这样不仅使学生很快地理解并概括出比的基本性质,还深深地受到了事物间存在着内在联系的辩证唯物主义启蒙教育。

  对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。例1的3道小题的教学使学生掌握各种情况化成最简整数比的方法:(1)是整数比,一般要把比的前项和后项都除以它们的最大公约数;(2)是分数比,一般先把比的前项和后项都乘以两个分数的分母的最小公倍数,转化成两个整数比再化简;(3)是小数比,第一步应用小数点向右移动相同位数的方法化成整数,再化简。

  最后巩固练习中的第3题是提高题,要求学生说一说怎么想,使学生能够灵活地运用学过的知识。

六年级数学下册教案8

  教学内容:教材60~61页内容

  教学目标:让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

  重点难点:

  1、学习用工具测量两点间的距离。

  2、学会步测和目测,体验步测和目测的价值。

  教学准备:卷尺、测绳、标杆

  一、认识测量工具

  教师播放农民在平整土地;工人在兴修水利、建造房屋时进行测量的场景。

  师:同学们在平时的生活中有没有看到过这些场景?你知道测量的工具有哪些?

  教师说明:测量土地时要用到标杆、卷尺、测绳等工具.

  二、测量方法研究学习

  1、利用工具实际测量

  师:如果要测量教室的长和宽可以怎样来测量?

  教师小结:测量较近的距离,可以用卷尺或测绳直接量出.

  师:如果要测量学校操场跑道的长度应该如何来测量?测量时应注意些什么问题?(学生边汇报,教师边演示“实际测量”)

  (1)两个人先在A点和B点各插一根标杆;

  (2)第一个人在A点指挥,第三个人把另一根标杆插在C点,使它和B点的标杆同时被A点的标杆挡住;

  (3)用同样的方法再把另一根标杆插在D点……

  (根据测量距离的长短来确定分段测量的`段数.)

  (4)把所有这些点连接起来,就定出了一条直线.

  测定直线以后就可以用卷尺或测绳逐段量出所要测量的距离了

  2、步测和目测

  (1)步测

  师:你知道1步的长度如何测量吗?

  组织学生学习书本上的内容,明确测量方法。

  提醒学生在实际进行步测时,要注意迈步均匀,防止步子忽大忽小,向前走时尽量保持直线进行。这样测量出来的结果相对准确些。

  教师演示1步的长度:从后脚尖到前脚尖的距离.

  教师演示步测的过程:先量出几十米的一段距离,用均匀的步子沿直线走上3、4次,记好每次走的步数,然后再算出平均每次走的步数,再算出走一步的平均长度是多少。

  (2)目测

  师:你现在能不能坐在座位上估算一下你和老师之间的距离.

  师:这种只用眼睛来估量一段距离的方法叫做目测.

  教师出示图片“参照图”,帮助学生练习目测.

  教师说明:目测时容易受地形的影响,如在开阔地,容易把距离估测的偏短,而在狭长的地方又容易把距离估测的偏长。

  三、实践活动

  1、测定直线.

  教师提出要求:让学生分组按照课前分别指定的两点之间测定直线,在地面上画出直线,并量出两点间的距离。

  2、步测

  (1) 引导学生确定自己的平均步长

  A:先在操场上量出一段距离(如50米):让学生反复走3次,并要求记下自己每次所走的步数,填在表格里。

  B:指导学生依次算出走50米的平均步数,以及自己的平均步长。

  教师也可以参与其中,可以让学生交流每个人步测的平均步长,总结身高高的学生通常平均步长一些,身高矮的学生平均步长相对短一些。

  (2) 步测学校操场的宽

  可以让学生先走一走,并记下所走的步数,然后根据自己的平均步长算出操场的宽。

  结合天天练P38页的实际测量,可以组织学生测量篮球场的长和宽。

  (3) 比较步测和工具测量的结果。

  用工具测量操场的宽,并将用工具测量的结果和步测的结果进行比较。

  3、目测

  教师先测定50米的距离,每隔10米插上标杆,估计10米、20米、30米……各有多长,然后拔掉标杆,根据指定的目标练习目测.

  四、课堂小结

  师:通过这节课的学习,你有什么收获?

  你知道步测和目测与利用工具测量有什么区别?

  总结:在缺乏测量工具或对测量结果要求无需很精确时,可采用步测或目测.

  课堂作业:完成天天练38页内容

六年级数学下册教案9

  教学目标:

  1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

  2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

  3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

  课前准备:

  教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。

  教学设计:

  一、创设情境导入

  1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)

  2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)

  3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……

  二、体验探究

  1、认识圆柱

  拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。

  (1)学生观察,并用手摸表面、滚一滚。

  (2)集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)

  预设;

  2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)

  3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面相等)

  4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)

  5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)

  那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)

  (3)刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下:圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面),叫做它的(侧面)。圆柱有无数条高。

  6、圆柱的侧面积。

  (1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?

  (2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

  预设:长方形、正方形

  (3)那么大家猜想的.对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

  师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)

  (4)下面请同学们认真观察,仔细的想一想

  我们得到的这张长方形纸与茶叶桶的侧面有什么关系?

  ①同桌互相讨论一下。

  ②集体交流。(指名说,教师随即板书)

  长方形的面积长宽

  圆柱的侧面积底面周长高

  (5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

  这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。

  如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)

  三、实践应用

  1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。

  2、29页1、2题

  四、课堂小结。

  通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)

  五、拓展延伸

  在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

六年级数学下册教案10

  教学内容:冀教版《数学》六年级下册第23~24页。

  教学目标:

  1、在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

  2、认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

  3、积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

  课前准备:

  教师准备一个带商标纸的罐头盒,一个圆柱图,小鼓、卫生纸、小木头段、圆台形物品。学生每人准备一个圆柱体实物。

  教学过程:

  一、创设情境

  1、让学生交流自己带来的物品,说出它的名字和形状。

  2、提出:想一想,现实生活中还有哪些形状是圆柱的物体?鼓励学生大胆发言,并引出今天的课题。

  二、认识圆柱

  1、让学生先观察自己带来的圆柱体物品,再闭着眼睛摸一摸表面。然后交流摸的感受。

  2、讨论:圆柱有几个面?各有什么特点?重点使学生了解圆柱的侧面是一个曲面。

  3、在学生交流的基础上,教师介绍圆柱的各部分名称并在图上标出来。

  4、让学生拿一个圆柱形实物,指出它的底面、侧面和高。

  5、提出:有什么方法可以验证圆柱上下两个圆的大小相等呢?给学生充分发表不同意见的机会。

  6、分别拿出圆柱体小木棒、卫生纸卷、瓶子、小鼓等物品,让学生判断是不是圆柱体。

  三、圆柱侧面积

  1、拿出一个带包装纸的罐头盒,让学生想象一下:如果沿着侧面的一条高把包装纸剪开,再展开,会是什么形状?

  2、教师照教材的样子,把罐头盒的商标纸沿着它的一条高剪开,然后展示并把商标纸贴在黑板上。

  3、分别提出教材中说一说的两个问题,给学生充分表达自己意见的机会。

  4、提出“议一议”的.问题,让学生讨论,由长方形的面积等于长乘宽,推导出圆柱的侧面积等于底面周长乘高。

  四、尝试应用

  1、师生共同测量出罐头盒的周长和高。

  2、让学生根据测量的数据尝试计算出它的侧面积,并全班交流计算方法和结果。

  五、课堂练习

  1、练一练第1题。先让学生读题,并判断用哪张纸比较合适。交流时,重点说一说是怎样判断的。

  2、练一练第2题。让学生自己计算罐头盒包装纸的面积,然后交流学生的计算方法和结果。

  3、第3题,用字母给出圆柱的半径或直径和高,求圆柱的侧面积。先让学生独立完成,然后全班订正。

  六、布置作业:

  练一练

  板书设计:

  圆柱的侧面积

六年级数学下册教案11

  教学目标:

  1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。

  2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。

  3、结合欣赏和设计美丽的图案,感受图形世界的神奇。

  重点难点:

  1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。

  2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。

  教具学具:

  三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带。

  教学过程:

  一、创设情境

  1、欣赏生活中美丽的图案。

  2、你看到的这些生活中的美丽图案,你有何感想?

  3、揭示课题:今天,我们来制作美丽的图案。

  [通过欣赏生活中美丽图案,激起学生对美丽图案的探究-,唤起学生制作图案的兴趣。]

  二、观察、分析图案

  1、课件2展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?

  [通过再次欣赏花瓣图案,观察分析图案的构成,使学生进一步了解一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,体会图案设计的基本过程。]

  2、小组内进行交流。

  3、小组代表汇报研究结果。

  4、你还有其他方法吗?

  [通过小组合作探究、自由讨论,鼓励学生采用不同方法交流。注重培养学生想象和操作相结合,分析图形之间的关系。培养学生研究空间图形的能力、初步的空间观念,体验活动成功的喜悦。]

  5、课件出示

  笑笑能将线面的.图1变成图2,你知道她是怎样做的吗?(同桌交流后回答)

  6、教师小结

  其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。

  三、设计图案。

  独立完成书37页练一练1题、2题。

  四、课堂小结

  1、同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?

  2、教师激励学生,提出希望。

  通过课堂小结,让学生感受到学习数学知识的愉悦,知道自己本节课学习了那些知识,还有什么不足,今后应该注意的问题。

  五、课后作业

  小组合作设计图案。

六年级数学下册教案12

  一、创设情境,再现知识

  谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?

  学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)

  这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?

  【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。

  二、梳理归网,学习内化

  1.回顾知识,自主梳理

  ①自己回顾每个概念的意义,同位交流。

  ②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)

  【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。

  2.交流展示,引导建构

  ①全班交流整理结果(展台展示,师及时点拨纠正存在问题)

  ②哪些是方程?哪些是等式?

  6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x= (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13

  ③你会解这些方程吗?解方程的根据是什么?(等式性质)

  选择几个解一解。(展台展示交流)

  如何判断方程解的是否正确?在解方程时要注意一些什么?

  ④复习简易方程的解法、步骤及检验方法、书写格式。

  【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的`过程。

  3.提炼方法,认知内化

  (1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)

  (2)出示第101页第4题及改编题

  20xx年山东省应届大学生本科毕业生报考研究生的人数达到62300人,比20xx年增加了40%。20xx年应届大学生本科毕业生报考研究生的有多少人?

  ①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?

  ②如果已知20xx年的人数,求20xx年的人数,用哪种方法合适呢?

  引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的思考过程变得简单)

  【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的方法解答。

  三、综合应用,整体提高

  1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么

  ①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?

  ②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)

  2.我是“精选细算“小英才

  课本101页5—8题(学生独立做,集体订正)

  3.智力冲浪

  课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)

  【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。

  四、总结提升,知情共融。

  这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?

六年级数学下册教案13

  《负数的认识》是新教材新增的内容,《数学新课程标准》这方面的教学具体目标是:“在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。” 根据这一目标和个人对此教材的理解设计了本课,通过实践有以下体会:

  一、 以学生生活经验为切入点,降低学习难度。

  课的到入环节,以学生喜爱的游戏方式,说反义词感受生活中的相反现象。如:①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层);在银行存入了500元(取出了500元)。知识竞赛中,五(1)班得了20分(扣了20分),等等。这些相反意义现象学生在生活中比较常见为学生认识负数构建了平台。。接着采用学生几乎每天都能接触到有关气温方面的信息,在天气预报中也经常看到负数,他们已经直观地感受到这些数是用来表示零下温度的。这一生活经验,六年级的学生已相当熟悉,以这些生活经验为学习切入点,展开负数的'教学,此“时”此“境”引入负数,更有助于理解生活中负数的具体含义,降低了学生的学习难度。

  二、学习起点把握不准,预设不够贴切。

  以前的数学教材中,“数与代数”领域已有较多内容,学生已能熟练地利用正数来表达、交流生活中遇到的实际问题。也由于当前大量媒体的介入,在生活中,对与负数学生也偶尔接触过,并几乎每天都接触到有关气温方面的信息,在天气预报中也经常看到负数,其实他们已经直观地感受到这些数是用来表示零下温度的。对于这些本人预设教案时有所考虑,但课堂上学生反馈的情况来看,学生比想象的知道的要多得多。特别是展开环节用温度切入教学时还安排详细的认识温度计环节,课中才发现学生其实在科学课早已会熟练的应用温度计了,完全没有必要安排这样的学习环节。再如我让学生举例:在生活中,在那里还见过象这样负几的数时,学生竟然举到电池的正、负,尽管这一现象也很好解释,并不产生对本课学习的困扰,但也实实在在是我课前完全没有想到的。可见,课前的预设还要多方面了解学生,多角度思考问题。

  三、自身的教学机智有待提高。

  如在教学中,发现了预设的过于详细,学生的学习起点定位过低,还有上面所提的认识温度计内容学生已经掌握等,显然应该要调整一下教学的进度内容。可是在课中并没有进行调整,显得课堂学习安排过于简单,时间也比较松散。课后反思,在课中加入摄氏度和华氏度的互化比较合适。首先,西方国家当前就使用华氏度,对面向世界当代孩子来说,这也将成为必备知识。其次,温度计上就有摄氏度和华氏度两种刻度,课堂上又有时间,方便穿插这一内容的学习,同时也增强了课外知识,也能拓宽孩子的视野。

六年级数学下册教案14

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙问题导入

  师:同学们,上节课我们复习了平面图形的特征,到目前为止,我们学习了哪些平面图形?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形。

  生2:我们还学过圆和圆环。

  (学生边说教师边把相应的图形贴在黑板上)

  师:什么是平面图形的周长和面积呢?我们今天就一起来复习关于平面图形的周长和面积的相关知识。(板书课题:平面图形的周长和面积)

  ⊙回顾与整理

  1.周长和面积的意义。

  师:什么是平面图形的周长?什么是平面图形的面积?

  预设

  生1:围成一个图形的所有边长的总和叫做这个图形的周长。

  生2:物体的表面或封闭图形的大小叫做面积。

  2.周长和面积的计算公式。

  (1)我们学过哪些图形的周长和面积的.计算公式?

  长方形、正方形、平行四边形、三角形、梯形、圆的周长和面积的计算公式。

  结合学生的回答,有序地画出相关的平面图形,为构建知识网络做准备。

  (2)如何计算这些平面图形的周长和面积?各个面积公式之间有什么联系?

  ①长方形的周长=(长+宽)×2,用字母表示为C=2(ab)。

  ②长方形的面积=长×宽,用字母表示为Sab

  ③正方形是特殊的长方形,正方形的周长=边长×4,用字母表示为C=4a;面积=边长×边长,用字母表示为Sa

六年级数学下册教案15

  教学目标:

  1. 通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。

  2. 经历探索活动,了解反比例曲线图的特征。

  教学重点:

  探究长方形面积不变时,长与宽的关系。

  教学难点:

  发现表示反比例曲线图的特征。

  教学过程:

  一、旧知铺垫。

  1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?

  2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的方格圈起来,可以连成什么线?

  3、说一说。

  (1) 两个乘数的变化情况。

  (2) 两个乘数成什么关系?

  (3) 你有什么猜想?

  二、探索新知。

  用X、Y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。

  x/cm 1 2 3 4 6 8 12 24

  y/cm 24 12 8 6 4 3 2 1

  1、说一说长与宽的变化情况。(小组交流)

  2、这里哪个量一定?

  3、面积一定时,长方形的长与宽有什么关系?(小组讨论)

  板书:长宽=长方形面积(一定)

  4、根据上面的数据,在方格纸上画出8个长方形。(每格代表 1 cm)

  过程要求

  (1) 出示方格纸,并标明X、Y轴上的数字。

  (2) 教师边讲解,边画长方形。

  (3) 学生接着画。(直接在课本上完成)

  5、连接图中的点A,B,C,D

  (1) 猜一猜:图中的点A,B,C,D在一条直线上吗?

  (2) 师生一起连线,验证自己的猜想。

  三、课堂小结

  说一说表示正比例关系的`图像和反比例关系的关系式和图像的区别。

  四、巩固练习

  面包的总个数不变,每袋装的个数与袋数如下表。

  每袋个数 2 3 4 6 8 12 24

  袋 数 12 8 6 4 3 2 1

  (1)每袋个数与袋数有什么关系?说明理由。

  (2)把上面的数据制成图表。

【六年级数学下册教案】相关文章:

数学六年级下册教案12-16

小学数学下册教案11-28

数学六年级下册教案最新05-08

六年级教案数学下册范文01-03

六年级数学下册教案11-06

数学六年级下册教学教案01-06

六年级下册人教版数学教案11-13

数学六年级下册教案:圆柱的体积02-10

六年级数学下册教案优秀03-28

人教版数学六年级下册优秀教案01-22