分数乘法教案

时间:2024-05-18 11:16:20 教案

(优秀)分数乘法教案

  作为一名教师,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的分数乘法教案,希望对大家有所帮助。

(优秀)分数乘法教案

分数乘法教案1

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的.条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案2

  教学目标

  1.进一步掌握分数乘法应用题的数量关系.

  2.学会用一个数乘分数的意义解答两步分数乘法应用题.

  教学重点

  1.掌握两步分数应用题的解题思路和方法.

  2.画线段图分析应用题的能力.

  教学难点

  分析两次单位“1”的不同之处.

  教学过程

  一、复习、质疑、引新

  (一)指出下面分率句中的单位“1” .

  1.乙是甲的

  2.小红的身高是小明的

  3.参加合唱队的同学占全班同学的

  4.乙的 相当于甲

  5.1个篮球的价钱是一个排球价钱的 倍

  (二)口头分析并列式解答

  1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?

  2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?

  (三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

  (出示课题——分数应用题)

  二、探索、悟理

  (一)出示组编的例题

  例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?

  1.思考讨论

  (1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?

  (2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?

  2.汇报思路讲方法

  根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .

  由此基础上试列综合算式:

  (二)巩固练习

  小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?

  1.分析数量关系,独立画图并列式解答.

  2.学生板演.

  (张)

  (张)

  答:小明有40张.

  3.综合算式

  三、归纳、明理

  用连乘解答的题有什么特点?”“解题思路是什么?”

  1.认真读题弄清条件和问题

  2.确定单位“1”找准数量关系

  根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

  3.列式解答

  板书:抓住分率句,找准单位“1”,

  画图来分析,列式不用急.

  四、训练、深化

  (一)联想练习根据下面的每句话,你能想到什么?

  1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)

  2.修了全长的

  3.现在的售价比原来降低了

  (二)先口头分析数量关系,再列式解答.

  1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?

  2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?

  (三)提高题.

  六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?

  五、课后作业

  (一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?

  (二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的,小勇跑的是小雄的` .小刚和小勇各跑多少千米?

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?

  教案点评:

  解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几,分数乘法应用题,小学数学教案《分数乘法应用题》。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

  这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法教案3

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少? 9个11是多少? 8个6是多少?

  (2)计算:

  1/6+2/6 +3/6 = 3/10+3/10 +3/10 =

  2.引出课题。

  ++这题我们还可以怎么计算?今天我们就来学习分数乘法。

  二、新授

  1、 利用3/10 +3/10 +3/10 教学分数乘法。

  (1) 这道加法算式中,加数各是多少?(都是)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 3)

  (3)3/10 +3/10 +3/10 =9/10,那么 3/10+ 3/10+3/10 =3/10 3,所以 3/103=9/10

  2、 出示例1,画出线段图,学生独立列式解答。

  (1) 引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的 ,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个 是多少?(列式: 3 = )

  3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、 练习:练习完成做一做第2题。

  5、 教学例2

  (1)出示 6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  三、练习

  1、 完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的`习惯)

  2、 做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  四、作业

  练习二第1、2、4题。

  (2)一个数乘分数

  教学目标:

  1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

  2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

  3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

  教学难点:推导算理,总结法则。

  教学过程:

  一、导入

  1、计算下列各题并说出计算方法。

  2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

  二、新课

  1、教学例3

  (1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:

  (2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即 的 ,由此得出这个乘法算式表示 的 是多少?

  (3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:= = 。

  (4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

  2、相关练习:练习二第5题。

  3、小结一个数乘分数的意义和计算方法。

  (1)意义:一个数乘分数,表示求这个数的几分之几是多少。

  (2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

  4、教学例4

  (1)引导学生分析题意,根据速度时间=路程的数量关系列出算式。

  (2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。

  (3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。

  5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。

  三、练习

  1、练习三第6题

  (1)求2枝长多少分米,就是求2个 是多少?算式: 2

  (2)求 枝或 枝长多少分米,就是求 的 是多少,或的是多少。

  2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

  四、作业

  练习二第3、7、8、10题。

  (3)分数混合运算和简便运算

  教学目标:

  1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

  教学重点:

  理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

  教学过程:

  一、复习

  1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

  2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

  3、观察下面各题,先说说运算顺序,再进行计算。

  (1)362+15 (2)56+73 (3)15(34-27)

  二、新授

  1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

  (1) +(2)- (3)-(4)+

  2、复习整数乘法的运算定律

  (1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  (2)这些运算定律有什么用处?你能举例说明吗?

  (3)用简便方法计算:2574 0.36101

  3、推导运算定律是否适用于分数。

  (1)鼓励学生大胆猜测并勇于发表自己的个人意见。

  (2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

  (3)各四人小组汇报讨论和计算结果。

  4、教学例6

  (1)出示: ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

  (2)出示: +,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 4和 4都能先约分,这样能使数据变小,方便计算)

  (3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

  三、练习

  P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

  (4)练习课

  教学目标:

  1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

  2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

  教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。

  教学难点:熟练掌握运算定律,准确、合理地进行简便计算。

  教学过程:

  一 、复习

  1、复习分数混合运算的运算顺序。

  2、复习乘法的简便运算定律

  乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  二、巩固练习

  1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

  2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-= (1- ); (5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

  3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 9,另一个同学做了11朵,列式 11,他们一共做了 9+ 11(朵),学生还可能这样列式: (9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

  4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

  5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

  6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

  三、布置作业

  完成相关的练习册。

  (5)分数乘法整理与复习

  教学目的:

  1.分数乘法的计算方法

  2.分数乘加、乘减混合运算

  3.熟练掌握运算定律,并运用运算定律进行简便计算。

  教学重点:

  1.分数乘法的计算方法

  教学难点:

  运算定律进行简便计算

  教学过程:

  一、复习分数乘法的计算方法

  30 ===

  60 ===

  12 ==

  二、复习分数乘加、乘减混合运算。

  + 1- (1- )

  7+ 120(+)

  三、复习分数的运算定律并进行简便计算。

  +12- - 48+48 24( - )

  四、相关文字题复习

  1、4的与的4倍的和是多少? 2、 的 比它的 多多少?

  五、相关的解决问题。

  1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?

  2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?

  3、 一个平行四边形,底是米,高是底的 ,这个平行四边形的面积是多少?

  六、拓展练习。

分数乘法教案4

  教学目标:

  1、通过练习,进一步使学生理解分数乘法的意义,掌握分数乘法的计算法则,能够比较熟练地进行计算

  2、使学生理解分数乘法应用题中的数量关系,回解答求一个数的几分之几是多少的应用题。

  3、培养学生的合作意识,使他们养成主动参与的良好学习习惯。

  教具准备:卡片、小黑板以及实物投影仪

  课时安排:2课时

  第一课时:

  一、复习。说出下面算式表示的意义。

  9×:它表示什么意义?并计算结果,板书。

  ×:它又可以表示什么意义?板书.

  二、自主性练习,教师巡视指导,并指名部分学生到黑板上板演。

  教学分数和整数相乘可以表示的`意义。

  友情提醒:注意分数约分法的使用,思考分数值大小的比较.

  学生分析。

  三、课堂板演练习:

  先指名分析:求这两种营养成分的多少,就是求什么?应该如何计算?请列出计算式子。之后由学生板演,其它学生互相解析。

  对解这样的问题,你有什么体会与感想?如何防止解题中可能出现的错误?

  尝试练习二:

  学生分析

  尝试练习三:

  学生板演后在课堂上指名分析

  四、课堂作业,教师巡视指导:P10第6、7两题。

  五、课后练习:

  作业本配套练习。

  第二课时

  一、反馈性练习:

  1、计算下列各题:

  ×6×8×12×35

  6×8×12×35×

  2、说出下面各题的意义和得数。

  ×7×415×6×

  如:×7,既可表示求7个的和是多少,也可以表示求7的是多少。

  二、学生板演下题。

  教学时,要灵活。要求学生说出数量关系式及思考过程。

  三、课堂作业:

  1、

  2、

  3、

  教师巡视,针对个别差生辅导。

  四、课堂小结,并布置作业。P12页,第12、13、14三题。

分数乘法教案5

  教学内容:

  分数乘法

  教学目标:

  1、力量目标:能依据解决问题的需要,探究有关的数学信息,进展初步的分数乘法的力量。

  2、学问目标:学习分数乘以分数的计算方法,学生能够娴熟精确的计算出一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的亲密联系,培育学习数学的良好兴趣。

  重点难点:

  学生能够娴熟的计算出分数乘以分数的结果。

  教学方法:

  师生共同归纳和推理

  教学预备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算以下分数乘法运算题。

  教师:来回巡察学生的做题状况,并提问学生说说自己如何计算的?

  学生查找完毕,纷纷举手预备回答下列问题。

  教师提问学生回答下列问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,留意让学生体会分数的几分之几是多少?

  学生做第2题,留意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比拟 的' 和 占整体1的大小。

  学生做第5题,教师留意让学生整体的几分之几是多少?

  学生做第6题,让学生留意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师留意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生依据学过的分数乘法学问,辨别一下唐僧分西瓜是否公正。

  三、课堂小结

  同学们,这一节课你学到了哪些学问?(提问学生答复)

  板书设计:

  分数乘法

  是整个操场 1的 , 是整个操场1的 。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案6

  一、学情分析:

  我们六(五)班有学生48人,男生有19人,女生有29人,自上学年实行小组合作学习以来,每个学生都有了明确的学习目标,在平时学习中主动、努力,每组中的1、2号对3、4号的帮扶起了很大的作用,使这部分学困生在思维方法和技能上有了进一步的提高,在数学情感上,能主动地参与到学习中来。

  二、教材分析:

  (一)教学内容

  本册内容共有8个单元。一单元分数乘法,二单元分数除法,三单元比,五单元分数四则混合运算,这四个单元所属领域是数与代数。四单元的圆所属领域是空间和图形。六单元的统计,七单元的可能性,八单元的百分数所属领域是统计与概率。美的奥秘,数学与生活,远离肥胖所属领域是综合应用。

  (二)教学重难点

  教学重难点有:分数乘除法应用题,按比例分配应用题,如何求圆的周长和面积,化简比和求比值的区别和联系。

  三、教学目标:

  (一)知识与技能目标

  1.能结合具体情境理解分数乘除的意义,能解决有关分数的实际问题。

  2理解比的意义和性质,会解决有关按比例分配的实际问题。

  3结合具体情境,理解百分数的意义,能用百分数解决问题。

  4掌握圆的周长和面积的计算方法,能够运用圆的周长和面积公式解

  决简单的实际问题。

  5认识众数、中位数,会求一组数的众数和中位数,会对一组数据作出合理的分析推理。

  6结合具体实例,设计一个符合要求的方案。

  (二)数学思考目标

  让学生经历知识的形成过程,感受“转化”和“数形结合”的数学思想方法。

  在观察、操作、思考、交流等活动中,

  进步发展抽象概括推理的能力。

  (三)情感态度目标

  1能积极参加数学学习活动,对数学有好奇心和求知欲,并获取成功的学习体验,增强学习数学的信心。

  2体会数学与人类生活的密切联系,感受数学的严谨性和数学结论的

  确定性。

  3学会倾听与质疑,养成独立思考的好习惯。

  四、教学措施:

  1整合学习内容,强化数学知识间的联系及学科间的'融合。

  2恰当确立每节课的教学内容,树立单元教学思想,在重点例题上下功夫。

  3精心设计数学活动,让学生在探索中理解数学知识,掌握数学方法。

  4注重数学思想方法的渗透和解决问题策略的方法。

  在本册中结合教学内容渗透“极限”和“数形结合”的数学思想。

  在教学中学生经历“现实问题——数学问题——联系已有知识经验寻找方法——归纳概括总结公式——运用公式解决现实问题”这一首尾相接的全过程。

  5改进评估方法实行小组“捆绑式”评价方法和个人评价方法相结合的方式。评价形式也有生生互评、师生互评等多种形式。

  五、课时安排

  一、分数乘法

  理解一个数和分数相乘的意义,理解分数乘分数的算理理解分数乘法的意义,掌握分数乘法的计算方法,会求一个数几分之几的实际问题

  二、分数除法

  分数除法的计算方法,

  解决已知一个数的几分

  之几是多少,求这个数的实际问题理解分数除法的意义,会计算,会解决实际问题。

  三、比

  理解比的意义和性质理解比的意义,会求比值掌握比的基质,会化简比。

  四、圆

  圆的周长和面积

  认识圆的特征,会正确计算圆的周长和面积。

  五、分数四则混合运算

  分析稍复杂的有关分数分析问题和解决问题的能力。四则混合运算问题的数量关系及理解四则混合运算的顺序。

  六、统计

  理解众数、中位数的意义,选择合适的统计量描述数据的特征。会求一组数的中位数、众数,会选择合适的统计量描述数据,分析问题。

  七、可能性

  能按要求根据可能性大小设计方案

  能根据可能性大小设计符合要求的方案

  八、百分数

  百分数的意义,解决一个数是另一个百分之几

  的问题能进行百分小的互化,解决实际问题

  总复习

  整理知识点

  养成总结与反思的习惯

分数乘法教案7

  一、教学目标。

  1、使学生理解分数乘整数的意义与整数乘法意义一样。

  2、使学生把握分数乘整数的计算方法,能正确进展计算,明白计算过程中能约分的要先约分的道理。

  二、教学重点。

  使学生理解分数乘整数的意义及计算方法。

  三、教学难点。

  总结分数乘整数的计算方法,理解分数乘整数算式的意义。

  四、教学过程。

  (一)设疑激趣,提出问题

  1、把9+9+9+9+9改成乘法算式。

  2、把O.2+0.2+O.2+O.2改成乘法算式。

  3、(1)口答整数乘法的意义。

  (2)求几个一样加数和的简便运算。

  4、列式计算。

  (1)5个12是多少?

  12×5=

  (2)12个1.5是多少?

  1.5×12=

  (3)3个是多少?

  5、提出问题。

  教师:求3个是多少,能不能用算式×3来表示呢?今日,我们就一起来学习分数乘法。

  板书课题:分数乘法(一)。

  (二)引导探究,解决问题。

  1、分数与整数相乘的意义。

  (1)出示题目。

  1个占1张彩纸的,3个占这张彩纸的几分之几?

  (2)探究沟通。

  ①用图示表示。

  1个图案占这张彩纸的。3个图案占这张彩张的。

  ②用加法计算。

  ③用乘法计算。

  (3)引导发觉。

  教师:求几个一样的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义一样。

  2、分数与整数相乘的计算方法。

  (1)涂一涂,算一算。呈现题目。

  (2)引导观看算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生仔细观看算式数字,思索其中的关联,并和同学沟通,说一说自己有什么发觉。在这一根底上,师生共同探究其中的.联系。

  (3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。

  (4)试一试。

  3、约分。

  教师:再计算时你有什么体会?让学生回答下列问题,同学之间进展沟通,通过算式比拟。最终,使全班学生明白:

  (1)在计算过程中,能约分的要先约分。

  (2)最终结果应当是最简分数。

  (三)稳固练习完成课文第3页“练一练”。

  1、第1题。

  完成后要将算式得数和涂的结果进展比拟,并说明计算中的要点。

  2、第2题。利用教材供应的素材,教育学生节省用水。

  3、第3题。

  (1)让学生独立完成。

  (2)同学之间相互沟通、校对,发觉问题,准时反应。

  (3)说一说计算的步骤、方法:

  ①分子与整数相乘作分子,分母不变。

  ②能约分的要先约分,再计算。

  4、第4题。

  (1)学生独立完成。

  (2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。

  5、第5题。让学生都算出结果,再观看各组题目的算式及结果,然后说一说有什么发觉。

  (四)作业选用课时作业。

分数乘法教案8

  一、单元分析

  本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。

  二、单元学习目标

  1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。

  2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  3.会利用分数乘法解决一些实际问题。

  4.使学生理解倒数的意义,掌握求倒数的方法。

  三、单元课时总数:9课时

  课题:分数乘整数1课时上课时间:年月日

  教材分析

  这部分教材是在已学的整数乘法的意义和分数加法计算的.基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。

  学情分析

  学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。

  教学目标

  1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算.

  2、培养学生的计算能力。

  3、激发学生学习兴趣,热爱学习数学。

  教学过程备注

  活动一:创设情境,初步理解分数乘法的原型

  教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?

  让学生审题后独立试做。

  学生可能会出现以下两种做法:

  (1)学生用连加法列式

  (2)用乘法列式

  借助于分数加法来理解理分数乘法的原型。

  活动二:教学分数乘整数的计算方法

  1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?

  全班交流,感觉分数乘整数的计算方法。

  总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。

  2、教学例2:6=

  让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。

  活动三:反馈练习

  1、完成9页中的做一做。

  教师注意强调学生的书写格式以及能约分的要先约分。

  注意体会在什么情况下用分数乘法来解决问题。

  2、完成练习二中的1、2题。

  活动四:质疑总结。

分数乘法教案9

  教学目标:

  1、结合具体情景,进一步理解分数乘法的意义,引导学生归纳、推理计算方法,并能正确计算(重、难点);

  2、能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  教学重难点:

  1、分数和分数相乘的意义和计算法则。

  2、求一个数的几分之几是多少的应用题。

  教学过程:

  一、创设情境激趣揭题

  1、出示课本上的`对话请境框。

  2、整理、归纳问题,并出示完整的题目。

  3、顺势导入新课,板书课题:分数乘法(二)。

  二、扶放结合探究新知

  1、巡视、指导小组讨论学习。

  2、提问:怎样用算是表示6个1/2?

  3、6×1/2这个乘法算式的意义是什么?

  4、归纳小结分数乘法(二)的算式意义:求一个数的几分之几是多少?

  5、6×1/3如何计算呢?

  6、总结计算方法。

  三、反馈矫正落实双基

  1、出示教材第5题试一试第1、2题。

  2、组织学生做第6页练一练1—3题。

  四、小结评价布置预习

  1。引导学生进行课堂小结。

分数乘法教案10

  练习内容:练习二中的第5~10题

  练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。

  练习过程:

  一、基础练习

  1、口算

  ××××

  14×15×××5

  2、计算

  ××427×

  过程要求:

  (1)请三位学生上台板演,其余学生做在练习本上。

  (2)集体反馈,学生计算过程。

  (3)着重强调约分的操作步骤。

  二、专项练习:

  完成练习二第5~10题

  1、第5题

  (1)提问各算式的意义。

  要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?

  (2)将结果写在书上。

  2、第6题

  (1)认真审题,弄清题意。

  (2)分别说明三个问题各属于什么类型的问题。

  (3)列式计算。

  3、第7题

  学生独立完成后,说一说你是怎样做的.?

  4、第8题

  学生列式计算,教师巡视,然后集体订正。

  5、第9题

  (1)学生判断正误,并说明原因。

  (2)改正算式。

  6、第10题

  (1)学生列式计算,教师巡视进行个别指导。

  (2)说一说你有什么体会。

  三、课后作业设计:

  一、计算。

  ×××14×

  ×120××24×18

  二、列式计算

  1、米的是多少米?

  2、千克的是多少千克?

  3、吨的是多少吨?

  三、解答下列问题。

  1、一辆汽车每小时行驶60千米,小时行驶多少千米?

  2、一个长方体长米,宽米,高米,它的体积是多少立方米?

  课后反思:

分数乘法教案11

  教学目标

  1.通过学生对生活情景的理解,生活信息的提取、加工,培养学生观察和提取信息的能力。

  2.会画线段图分析分数乘法两步问题的数量关系。

  3.通过学生灵活选择乘法运算定律解决实际生活问题的操作,培养学生完整的数学思维和清晰的表达能力。

  教学重点难点

  1.分析分数乘法两步问题的数量关系。

  2.抓住知识关键,正确、灵活判断单位“1”。

  课前准备:课件

  课时安排:2课时

  教学过程

  第一课时

  一、复习旧知,导入新课

  课件出示,学生回答。

  1.下面各题分别把什么看作单位“1”的量?谁是几分之几相对应的量?

  (1)一块布做衣服用去3÷5。

  (2)一条公路,已修了4÷7。

  (3)小明有一些零花钱,用去一部分后,还剩下3÷4。

  (4)水结成冰,体积膨胀1÷11。

  2.口头列式

  (1)32的3÷8是多少?

  (2)120页的1÷6是多少?

  3、揭示课题

  上节课我们学习了简单的分数问题,今天我们继续研究稍复杂的分数乘法问题。

  二、自主探究 掌握新知

  1.世界文化遗产秦兵马俑被称为“世界第八大奇迹”。目前已发现3个兵马俑。

  2.课件出示兵马俑资料

  (1)1号坑内有6000尊陶俑、陶马,已清理出它的1÷6。

  (2)1号坑面积最大,比2号坑大5÷9,2号坑占地面积约9000平方米。

  (3)2号坑内的陶俑、陶马数比1好少3÷4。

  (4)3号坑最小,内有陶俑66尊。

  3.让学生认真阅读资料并思考:你们能提出什么问题?

  结论1:1号坑还剩下多少尊陶俑、陶马没有处理?

  生2:1号坑占地面积约有多少平方米?

  生3: 2号坑有多少尊陶俑、陶马?

  ……

  4.同学们的提问都很好,现在我们先来解决生1的问题。课件出示:1号坑还剩下多少尊陶俑、陶马没有处理?

  5.学生选择有关的信息分析数量关系,为了帮助理解,我们可以借助画线段图的方式。

  6.引导学生画线段图。

  怎样用线段图表示已知条件和问题呢?师和学生一起边画图。(图略)

  7.借助线段图分析数量关系,列式解答。(师巡视)

  8.汇报展示,交流评价。

  结论1:先求出清理出多少尊,再用总尊数—已清理出的尊数=剩下的尊数。

  6000—6000×1÷6

  =6000—1000

  =5000(尊)

  生2:先求出未清理的尊数占总尊数的'几分之几。

  6000×(1—1÷6)

  =6000×5÷6

  =5000(尊)

  要求汇报时,让学生说出图中各部分表示什么,哪些是已知的,哪些是要求的,哪一个单位是表示单位“1”的量。

  刚才我们一起解决了生1的问题,现在我们再来解决生2的问题。

  1.课件出示:1号坑占地面积约多少平方米?

  2.让学生根据有关信息,自己画线段图,教师给予适当的提示。(图略)

  3.师生检查线段图画的对不对。

  4.尝试借助线段图分析数量关系,并列式解答。

  强调:谁是单位“1”?

  5.汇报展示,交流评价。

  结论1:先求1号坑比2号坑大多少平方米,再用2号坑的面积+大出的面积=1号坑的面积。

  9000+9000×5÷9

  =9000+5000

  =14000(平方米)

  生2:先求1号坑占地是2号坑的几倍。

  9000×(1+5÷9)

  =9000×14÷9

  =14000(平方米)

  6.对比两种解法,你更喜欢哪种解法?为什么?

  同学们,我们现在已经解决了两个问题,你们学会了吗?下面,你们能自己解决问题了吗?

  课件出示:2号坑有多少尊陶俑、陶马?

  说明:要求学生认真审题,画好线段图,分析数量、列式解答,师生订正。

  (1)6000-6000×3÷4 (2)6000×(1-3÷4)

  =6000-4500 =6000×1÷4

  =1500(尊) =1500(尊)

  二、全课总结

  今天我们学习了什么内容?解决稍复杂的分数问题,为了使数量关系更加清楚,我们可以借助什么方法?解决问题要注意方法多样性,有时可以选择更加简便的方法。

  三、巩固练习

  教材第81页第1题,填一填。

  学生独立完成,师生订正。

  板书设计

  两步分数乘法问题和简便运算

  1.1号坑还剩多少尊陶俑、陶马没有清理?

  6000-6000×1÷6 6000×(1-1÷6)

  =6000-1000 =6000×1÷6

  =5000(尊) =5000(尊)

  2.1号坑占地约多少平方米?

  9000+9000×5÷9 9000×(1+5÷9)

  =9000+5000 =9000×14÷9

  =14000(平方米) =14000(平方米)

分数乘法教案12

  教学目标

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重难点

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

  一、复习

  出示复习题。

  1.根据题意列出算式:

  5个12是多少?

  3个14是多少?

  2.下列句子中那些可以看做单位1

  猎豹的速度是狮子的七分之三。

  参加合唱队的同学占全班人数的'五分之一。

  红花比黄花多二分之一。

  十月比九月节约四分之三。

  3.计算:3/10 +3/ 10 + 3/10 =

  3/10 + 3/10+ 3/10这题我们还可以怎么计算?

  今天我们就来学习分数乘法。

  二、新授

  1、利用3/10 + 3/10 + 3/10教学分数乘法。

  (1)这道加法算式中,加数各是多少?(都是3/10)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)

  (3) 3/10 +3/10+ 3/10=9,那么3/10 + 3/10 + 3/10= 3/10 ×3,

  所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?谁能把它补充完整

  2、出示例1,

  (1)理解题意:

  引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,

  “人跑一步的距离相当于袋鼠跳一下的2/11 ”是什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠

  跳一下的2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11是多少?

  (列式:2/11×3 = 6/11 )

  有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

  3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示3/8×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。 (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  6.练一练,课件出示,学生独立计算。然后订正。

  三、巩固练习

  比赛:

  第一回合

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  第二回合

  2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  四、课堂总结:

  今天你有什么收获?

  五、布置作业:练习二第1、2、4题。

分数乘法教案13

  教学目标

  1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

  2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

  教学重点和难点

  1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

  2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

  教学过程

  (一)复习准备

  1.谈话、提问。

  我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

  为什么呢?

  分5份后取其中的2份是多少。)

  当一个数乘以分数时求的是什么?

  (一个数乘以分数就是求这个数的几分之几是多少。)

  2.口述下列算式的.意义。

  求一个数的几分之几是多少怎样列式呢?

  3.列式。

  (二)学习新课

  1.出示例1。

  2.分析题意。

  (1)读题,找出已知条件和所求问题。

  (2)分析已知条件。

  ①谈话提问:

  题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

  那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

  ③汇报讨论结果。

  均分成5份,吃了的占其中的4份。)

  ④那么我们应把谁看作单位1?(100千克)

  ⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

  3.列式解答。

  (1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

  10054=80(千克)

  1005求的是什么?再乘以4呢?

  (2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

  所以把谁看作单位1?(100千克)

  根据一个数乘以分数的意义应怎样列式?

  答:吃了80千克。

  4.课堂练习。

  队的有多少人?

  (1)读题,找出已知条件和问题。

  (3)请你们以小组为单位进行分析,并画出线段图,解答出来。

  (4)反馈。

  说一说你们小组的分析思路及解答方法。

  是多少。)

  5.小结。

  刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?

  (分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)

  6.下面我们来看这样一道题,看看它与上面的题有什么不同?

  (1)出示例2。

  (2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

  (3)分析、画图。

  ①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)

  ②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

  ③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

  (4)看图列式。

  少。)

  ②怎样列式解答?

  7.改动上题,你能独立分析吗?

  米?

  (2)画图分析解答。

  (3)提问反馈:

  ①把谁看作单位1?

  ②小林身高怎样用线段图表示?

  ③求小林身高就是求什么?

  求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

  (三)课堂总结

  例1、例2有什么相同点和不同点?

  (四)巩固反馈

  (画图,解答)

  球价格多少元?

  3.对比练习:

  少元?

  (五)布置作业

  20页第1~5题。

  课堂教学设计说明

  本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

  例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

  例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

分数乘法教案14

  教学目标:

  1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。

  2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。

  3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。

  教学重点:

  一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。

  教学难点:

  理解分数表示的“分率”和“具体量”的区别。

  教学过程:

  一、创设情境,切入课题

  朗读诗歌。出示《春》的诗句:

  春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。

  这首诗的最大特点是什么?你能用我们学过的数学语言来描述吗?能编一些分数乘法解决的问题吗?

  例如:“春”的字数占总字数的几分之几?

  《春》这首诗共有30个字,光“春”字就占了全诗的五分之二,其他字有多少个?“春”字只比其他字少几个?

  学生解答后交流解题思路

  小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。

  二、基本练习,掌握方法

  题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)

  (1)梨子的数量是桔子的五分之二;

  五分之二表示()与()的.数量关系;

  ()表示“1”;()表示五分之二;

  根据数量关系列示()×()=()。

  (2)一袋米,还剩七分之三;(先补充完整“还剩谁的七分之三”)

  (3)火车速度比汽车快三分之一

  (4)实际烧煤比计划节约八分之三

  小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。

  三、分类练习

  (一)根据列式补充问题

  根据列式的含义,在每个算式的后面补充合适的问题。

  小华看一本168页的故事书,已经看了七分之四,?

  (二)补充条件进行题组的对比练习:

  选择对应的列示填在括号里,并说出为什么。

  某工厂四月份计划用煤135吨,(),实际用煤多少吨?

  四、课堂检测:

  1、小强想买一台5600元的电脑,他现在只有这台电脑单价的五分之三的钱,小强要买这台电脑还差多少钱?

  2、甲、乙两地相距240千米,一辆汽车从甲地到乙地,已经行驶了120千米,再行驶多少千米距离乙地还有全程的六分之一?

  3、一桶油重200千克,第一次用去它的八分之五,第二次用去剩下的五分之二,第二次用去多少千克?

分数乘法教案15

  本课题教时数:本教时为第1教时备课日期9月16日

  教学目标

  使学生进一步认识分数乘法可以表示的意义,进一步掌握分数乘法的计算法则,能比较熟练地进行分数乘法以及分数除法和加、减法的混合运算,提高学生的计算能力。

  教学重难点

  计算发则的掌握和计算能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、揭示课题

  二、整理分数乘法的意义和法则

  三、计算练习

  五、小结

  六、作业

  交代复习要求

  1、复习题1

  ×15和12×都是怎样的两个数相乘?分数和整数相乘可以表示的意义有哪些?分数和整数相乘怎样计算?

  ×使什么数乘什么数,可以表示什么意义?分数和分数相乘怎样计算?

  归纳说初分数乘法都可以怎样计算?

  通过所举的三道乘法例子,我们弄清了本单元分数乘法意义和计算方法的这些内容。

  结合提问板书成下表:

  内容

  举例

  意义

  计算方法

  分数和整数相乘

  ×15

  12×

  可以表示求几个相同分数的`和的简便运算;

  也可以表示求一个数的几分之几使多少

  分子相乘的积作为分子,分母相乘的积作分母。

  分数和分数相乘

  ×

  可以表示求一个数的几分之几使多少。

  练习三道题。

  2、复习2

  1、复习3

  2、复习4前三题

  上下练习

  第一小题怎样算比较简便?第二小题先算哪一步?为什么先算乘法?第三小题为什么先算加法?

  小结。

  3、复习5

  说明怎样简便?为什么?

  复习34后三题6

  课后感受

  学生练习的密度可稍加强。

【分数乘法教案】相关文章:

分数乘法教案03-14

分数乘法教案05-18

分数乘法教案优秀02-17

关于分数乘法的教案03-31

分数乘法之分数乘小数教案06-16

分数乘法教案优秀(热门)10-13

分数乘法教案15篇03-14

分数乘法教案(15篇)03-16

分数乘法教案汇编15篇03-27

分数乘法教案(通用15篇)03-27