小学方程的教案
作为一名无私奉献的老师,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编整理的小学方程的教案,希望能够帮助到大家。

小学方程的教案1
教学目标:
1、使学生通过自主探索学会列方程解比较容易的两步应用题
2、培养学生的主体意识,创新意识,合作意识以及分析能力,观察能力,发散思维能力,表达能力
3、使学生体验到生活中处处是数学,体验到数学的应用价值,体验到数学学习的乐趣和成就感。 教学重点:掌握列方程解应用题的方法步骤。 教学难点:根据题意分析数量间的相等关系。
教学准备:多媒体课件
教学设计:教师创设生活情境,使孩子在一个充满鼓励,充满肯定,充满分享,充满赞美的环境中学习。培养他们感悟生活的能力。
教学过程:
一、创设生活情境,复习旧知,导入新课
1、师:同学们,休息日的时候,你们都做些什么? 生:看电视、补课等。
2、师:出去玩同样会学到知识,只要你留心,生活中处处都是数学, 上周日小明和妈妈去公园玩就遇到了好多数学问题。 (课件显示)小明最喜欢坐飞机了,于是妈妈给了他一些钱,让他自己去买票。(课件显示)他花了5元钱,还剩15元,妈妈给了小明多少钱,你们知道吗? 学生汇报,解题思路并列式 师:谁还有不同的方法? 学生用含未知数X的方法进行汇报 肯定学生的发言,引出课题。
二、合作学习,探索新知
教学例题 (课件显示)玩下一项游乐项目,先去买票,票价6元,买两张,还剩38元,你知道这次妈妈又给了小明多少钱吗? 想一想,这组信息中蕴含着怎样的关系呢? 学生汇报。 师肯定学生发言。 下面,我们就用列方程的方法来解决这个问题吧!你们认为应该怎样做? 学生猜想。 师:现在,请同学们用自己找出的数量关系,根据刚才讨论的结果来列方程解决这个问题吧?。学生汇报,老师板书。 归纳步骤. 师:学到这,请同学们回顾并讨论一下,刚才我们用列方程的.方法解题时经过了哪些步骤? 学生充分讨论后汇报。 师:看看数学专家是怎么归纳的呢?(出示投影) 肯定学生,赞扬学生。
三、实际应用
1、师:小明玩了半天,他和妈妈都感到口渴了,不知买什么饮料好。谁愿意帮小明出出主意? 师:现在我们虚拟购买饮料的场景。我当售货员,各小组派一名同学买饮料。用今天学习的知识求每瓶水的价钱。 学生在小组内合作,共同解决问题。 汇报时让学生说说是怎么思考的,请其他同学针对他们的思考方法和解答过程提出意见。
2、(课件演示)小明选择了买酸奶。 (出示小票)看了小明的购物小票,从中你知道了什么?还有什么是不知道的?( 数量) 学生解决问题,独立完成后小组成员互评,并给有困难的同学帮助。 教师巡视指导。 学生汇报。
3、最后,妈妈还剩下38元钱,要买些水果回去,看到苹果每千克3元;梨每千克2元;香蕉每千克6元;桔子每千克4元,可还要剩下20元钱买生日蛋糕。如果你是小明,你想卖哪种水果呢?利用本节课所学的知识算一算,看看能买几斤? 学生可讨论,可试做。做后汇报。
四、全班总结
师:通过这节课的学习,你有哪些收获? 学生从各方面回答。 师:今天,同学们的收获可真不小!课后让我们继续运用今天所学的知识去解决生活中的实际问题吧!最后我送给大家一句话:生活中处处充满了知识,要学会做一个生活中的有心人,你才能成为学习上的成功者。
小学方程的教案2
教学目标:使学生会列方程解答文字题。
使学生初步感受用方程解题的优越性。
重点难点:使学生掌握列方程解文字题的的一般方法。
教学过程:
一、准备引入。
用含有字母的式子表示下面的数量关系。
1、x的3倍加1.6的和。
2、12减x的'6倍的差。
二、新课教学。
1、出示例7列出方程,并求出方程的解。
12减一个数的6倍,差是5.4,求这个数。
2、分析讲解:
(1)先设未知数,一般用x表示;
(2)再根据题中表述的相等关系列出方程;
(3)求方程的解;
(4)检验方程。
解:设这个数是x。
12—6x=5.4
6x=12—5.4
6x=6.6
x=1.1
3、做试一试。要一个学生到黑板上去做,其余的做在纸上。
一个数的5倍减14与3的积,差是23。
解:设一个数为x。
5x—14×3=23
5x—42=23
5x=23+42
5x=65
x=65÷5
X=13
三、巩固练习。
见书本练一练。
四、总结。
五、布置作业
作业本p:60第(6)。
小学方程的教案3
教学理念:
让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。
教学过程:
一、课前探疑
学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。
二、课始集疑
1、揭题
2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。
过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。
三、课中释疑
<一>认识天平:课件出示天平,同学们说天平的作用、用法。
<二>认识等式
1、演示课件 写出式子
在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?
你能用一个数学式子来表示这时候的现象吗? 40+50<100
再在左边放一个30克的物体,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+50+30>100
把左边的一个30克的物体换成10克的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+50+10=100
再把左边的`10克与50克的物体换成未知的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+X<100
再把左边的未知的物体换成另一个未知的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+X=100
再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? X + X=150
2、分类
刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。
展示同学们不同的分类,并说说你们是按照什么标准分的?
师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)
3、理解概念
师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等
揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)
谁来举一些例子说说什么是等式?
小学方程的教案4
四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。
第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。
第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。
全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。
一、 解稍复杂方程的策略转化成简单的方程。
两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。
1. 从各个方程的特点出发,使用不同的转化方法。
解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。
解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成
(ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。
2. 转化后的简单方程,教法不同。
例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。
例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。
3. 加强解方程的练习。
前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的'答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。
还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。
二、 列方程解决实际问题的关键找出相等关系。
列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。
相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。
1. 灵活开展思维活动,找出相等关系。
较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。
寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。
怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。
2. 加强写式练习,进一步把握数量关系,为列方程打基础。
含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。
练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。
练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。
3. 列方程解答新颖的问题,拓展等量关系。
本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。
练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。
例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。
小学方程的教案5
教学重点难点:
教学目标1、2是重点,目标1是难点。
教学时数:2课时
课前预习:
1、专注地朗读文章至少3遍,并抄写重要词语2遍:
倒行逆施刻骨铭心黯淡无关侥幸拍摄纯粹
2、结合课后练习,先自我思考。
第一课时
主要内容:
仔细朗读文章,梳理文章脉络;整体把握文章,理解作者的巧妙构思。
教学步骤:
1、检查课前预习成果。
①听写课前抄写的6个词语,并有选择地让学生口头造句。如:刻骨铭心、黯淡无光。
②本文的标题是“日历”,但文章显然不仅仅是写日历,那么文章究竟是写什么?想告诉人们什么?
明确:写时间,写生命;告诉我们时间易逝,生命易逝,要倍加珍惜(要求:学生能从文章中找到重要的句子来支撑自己的看法)。
2、朗读文章,感知文章深意。
①既然同学们知道本文不只是写日历,而是有更深层的意思,是时间与生命。就请大家再次专心致志地朗读文章一遍,再次感知文章的深意。
(自由朗读,感知深意)
②再读文章,理清脉络。
本文怎么从日历谈到时间与生命呢?这个过程有些曲折。我们一道沿着作者的思路,从“日历”出发向“时间”“生命”攀登,理清脉络,就能更加理解文章深意。
第一组朗读2—3自然段,并归纳大意。
明确:扯下一页日历——向往明天但又感到岁月匆匆与虚无。
第二组朗读4—6自然段,并归纳大意。
明确:不能从容地扯下日历——因为那是生命的页码。
第三组朗读8—9自然段,并归纳大意。
明确:明白日历的意义——生命忠实的记录。
第四组朗读10—15自然段,并归纳大意。
明确:不肯再去扯日历——因为想保存岁月。
归纳:由此可知,本文表面看来是写日历,但处处是写时间,写生命。从“扯下一页日历”到“不能从容地扯下日历”再到“明白日历的意义”和“不肯再去扯日历”,这个过程就是对时间与生命的认识不断深化的过程。
3、理解文章的巧妙构思。
珍惜时间与生命,这是个抽象的问题。而此时我们不觉得抽象,反而是具体可感,为什么?
明确:主要原因是作者把抽象的认识转化为具体的事物来表现,让读者看得见,摸得着。
这就是作者构思的巧妙之处,也是本文的魅力之一。将抽象的时间与生命转化为熟悉而具体的日历,十分形象。如果用几句话来描述二者之间的关系,可以这样说:
时间(生命)是一本日历,扯下了一页便消失了一天。它时刻在警醒我们:时间(生命)无价,要好好珍惜。
4、借助语言训练强化认识。
如果也让同学们用一种具体的事物来表现时间、生命,你会选择什么?请同学们写一段话来表现你对时间与生命的认识。
学生先写后交流,教师板书学生所选择的事物。
5、作业:
①根据课堂上写的几句话,在此基础上扩写成一则不少于200字的片段。
②延伸阅读朱自清的《匆匆》。
第二课时
主要内容:
品味哲理式句子;进行片段写作,强化学生的时间与生命意识。
教学步骤:
1、朗读文章,初步感受哲理式句子。
上节课,我们体会了文章的魅力之一——巧妙的构思。其实,同学们还应当会感受到本文的另一个魅力——众多富有哲理的句子。每读到此处,我们不禁会放慢速度,若有所思。请大家细心朗读文章,标画出你认为富有哲理或者能触动你内心情感的句子。
要求边读边标画,形成自己的初步感受。
2、朗读并交流哲理式句子,品味深意。
①学生朗读自己所标画的哲理式句子。
②学生以同桌2人或上下桌4人为小组,互相交流所标画的哲理式句子。
③学生个人展示哲理式句子的阅读感受和启发。
④教师点拨几个重点的哲理式句子,引导学生品味深意。
例如:“如果你静下心来就会发现,你不能改变昨天,但你可以决定明天。”
“于是,光阴岁月,就像一阵阵呼呼的风或是闪闪烁烁的流光。它最终留给你的只有无奈和频生的白发和消耗中日见衰弱的身躯。”
“一个个明天,不就像是一间间空屋子吗?那就看你把什么东西搬进来。”
“因为日历是有生命感的,或者说日历叫我随时感知自己的生命并叫我思考如何珍惜它。”
(教师的点拨可以有两个层次:首先是句子包含的意义,其次是给予我们的联想与启迪)。
3、质疑与总结。
学生再读文章,还有什么疑问可以提出并进行交流和释疑(尽量多采用学生内部互动,但教师必须有意地解决一些重点疑问)。
如:前面老师朗读时有意避开第七自然段,请同学们思考能不能不写这一段,它与文章主题有何关系?
明确:本段与文章主题有着密切关系。正因为有这段人生难忘的经历才使“我”对生命有着更深刻的认识,懂得了日历的意义,刻骨铭心。
又如:阅读练习与探究中的第二题。
明确:之所以全文没有不统一的感觉,是因为这两者之间的本质是统一的。“为有大把大把的日子而心头十分快活”,那是因为我向往明天,有明天就有生命和希望。后来又说“感到岁月匆匆与虚无”,“日历大多数的.页码都是黯淡无光”,这是因为我感到岁月的易逝、生命的可贵,不想碌碌无为。
总结:本文没有写故事,也没有写风景,谈的是一个抽象的道理,但文章却能打动读者,令人喜爱。原因至少有两点:首先是巧妙的构思,从具体形象的日历入手,能够引起读者的共鸣。二是众多富有哲理式的句子,令人深思,启人智慧,获益匪浅。
4、拓展写作。
学习了本文,又阅读了《匆匆》,同学们对时间与生命可能有更深的认识和体会。请以“我想这样走过每一天”为题,或者也借助某一具体可感的事物谈论时间、生命,写一篇600字以上的文章。
5、课外延伸阅读。
发给学生有关作者的简介资料,建议学生课外阅读《珍珠鸟》和《高女人和她的矮女人》。2018中考数学知识点:直线的平面方程公式大全
2018中考数学知识点:直线的平面方程公式大全
直线的平面方程包括了一般式、点斜式、斜截式、截距式等。
直线的平面方程
1、一般式:适用于所有直线
Ax+By+C=0(其中A、B不同时为0)
2、点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为
x=x0
3、斜截式:在y轴上截距为b(即过(0,b)),斜率为k的直线
由点斜式可得斜截式y=kx+b
与点斜式一样,也需要考虑K存不存在
4、截距式:不适用于和任意坐标轴垂直的直线
知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为
bx+ay-ab=0
特别地,当ab均不为0时,斜截式可写为x/a+y/b=1
5、两点式:过(x1,y1)(x2,y2)的直线
(y-y1)/(y1-y2)=(x-x1)/(x1-x2)(斜率k需存在)
6、法线式
Xcosθ+ysinθ-p=0
其中p为原点到直线的距离,θ为法线与X轴正方向的夹角
7、点方向式(X-X0)/U=(Y-Y0)/V
(U,V不等于0,即点方向式不能表示与坐标平行的式子)
8、点法向式
a(X-X0)+b(y-y0)=0
大家尤其要注意的是直线方程的一般式中系数A、B不能同时为零。
小学方程的教案6
教学目标:
1、使学生理解并掌握等式、方程、解方程和方程的解的意义。
2、学会检验方程的解。
3、培养学生的逻辑思维能力。
教学重点:掌握概念。
教学难点:掌握检验书写格式。
教学准备:投影、小黑板。
教学过程:
一、情境兴趣
1、(小黑板)在下面的括号中填入“>”“<”或“=”。
24×5()25×454+6()6078÷3()78×3
50×18()5×18031-3×5()1623×9+1()23×10
程序:
A、先口答什么号。
B、(板书如下)把这6个算式分成两类,应该怎么分?
24×5>25×454+6=60
78÷3<78×350×18=5×180
23×9+1<23×1031-3×5=16
得出概念:(板书)用“=”连接,表示左右两边相等的式子,叫做等式。那么这些左右两边不相等的式子,当然就叫不等式了。
2、(投影制成复合片)下列式子中有几个等式?
45×2<1009999-9991=87=6+1
X+18=20xx+5×7240÷X=10
程序:
A、说出哪些是等式后,揭去不是等式的式子。
B、(板书)把这四个等式分成两类,你认为应该怎么分?
X+18=20xx÷X=10
得出概念:(板书)含有未知数的等式叫做方程。(突出两个条件:含有未知数、等式。)
3、(投影)下面哪些是方程?哪些不是方程?(手势表示)
35-X=1284÷12=74-X>3269+X=24×564=X+60X÷5
4、(板书)方程中的不知数X等于多少我们能把它求出来吗?比如上面的例子:X+18=20xx÷X=10中X等于多少?(板书解出来)得出:(板书)使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
5、(书面练习)判断哪个是方程的解?P22练一练3。
6、我们以前学习的求未知数X的值其实就是解方程。怎么解方程大家会不会呀?我们再学一点大家不会的,哪就是写出解方程的检验过程,写检验过程有它特殊的格式,我们应认真学好。(板书上面其中一题的.检验过程)
“检验:用X=4代入原方程,
左边=40÷4=10,右边=10。
左边=右边,
所以4是原方程的解。”(注意讲清各个步骤的含义)
三、反馈矫正
1、(板演)P22试一试。
2、(课堂作业)P22练一练2。(注意:写出检验过程)
3、(小黑板)看图列出方程并求解。(内容同《作业本》P19D3)。
四、评价激励
小结:本节课我们学习了“等式、方程、方程的解、解方程”四个概念,(复述概念)并掌握了检验的书写格式。
小学方程的教案7
教学要求:掌握直线方程的两点式与截距式,能熟练地由已知条件求直线的方程。
教学重点:掌握两点式与截距式方程。
教学过程:
一、复习准备:
1.求下列直线的方程:
①过点P(-2,1),倾斜角与直线y=2x-3的倾斜角互补;
②在y轴上截距为-1,倾斜角的正弦为;
③在x轴上截距为2,且斜率为-3。
2.知识回顾:点斜式;斜截式
二、讲授新课:
1.教学两点式、截距式方程:
①预备题:求过点A(-2,1)、B(3,6)的直线方程
②先讨论解法→试解(常规解法:先求k)
③讨论:设直线AB上任意点P(x,y)后,与A、B两点坐标有何关系?是否是方程?
④出示例:已知直线L过点P(x,y)、P(x,y)(x≠x),求直线L的方程。
⑤讨论解法。(分别从斜率、定比分点等角度思考)
解法一:先求k,代入点斜式;解法二:用定比公式建立等式;
解法三:用斜率相等建立等式
⑥观察三种求出结果共同点,化成统一形式,定义直线两点式方程,强调对应关系。
⑦练习:已知直线所经过两点,求直线方程:A(2,1)、B(0,-3);(a,0)、(0,b)
⑧定义:直线的截距式方程+=1,其中a、b分别为直线在x、y轴上的截距。
2.教学例题:
①出示例:△ABC中,A(-5,0)、B(3,-3)、C(0,2),求三边所在直线方程。
②分析:每边所在直线方程所选用的适当方程式。
③练习:写出过A(3,-1)、B(-2,5)直线两点式方程,并化为截距式、斜截式方程。
三、巩固练习:
1.求过点P(-5,-4),且满足下列条件的直线方程:
①倾斜角的正弦是;②与两坐标轴围成的三角形的`面积等于5;
③倾斜角等于直线3x-4y+5=0的倾斜角的一半。
2.直线L过点P(1,4),且在坐标轴上截距均正,求两截距之和最小值及L方程。
变题:当三角形面积最小式,求直线L的方程。
3.课堂作业:书P447、10、12题。
小学方程的教案8
教学目标:
通过比较,使学生理解用方程解应用题和用算术方法解应用题的异同,知道两种解法的适用范围,感受用方程解的优越性。
重点难点:
使学生弄清用两种方法解答应用题的不同点,知道两种方法的适用范围,进一步体会列方程解应用题的优越性。
教学过程:
一、复习准备:
说说列方程解应用题的一般步骤?最关键的是哪一步?
二、学习新课
1、出示例8
(1)读题,分析题意
(2)用方程解的话,该抓住哪一个相等关系来列方程?
(3)反馈说理
(4)归纳小结:列方程时,只要抓住正确的相等关系就可以
(5)用算术方法解,该从哪里开始考虑?
(6)反馈,说理。解:(25×4+60)÷2.5
(7)说说每一步表示的'意义
(8)分组解方程,计算用算术方法解的结果。
(9)小结:同一个问题可以用方程解也可以用算术方法解,可用多种方法来解答。
2、比较
(1)用方程解应用题和用算术方法解应用题有什么不同之处?
(2)学生同桌互相讨论
(3)归纳小结(按课本P131上的结语,归纳后板书)
3、练习试一试:先用方程解,再用算术方法解
(1)讲评时要求学生说出思考过程
(2)讨论:用方程解与用算术方法解应用题,哪种方法更合理些?
三、巩固练习:完成练一练
四、总结并布置作业
小学方程的教案9
一、教学内容:
人教版五年级上册第62~63页“方程的意义”。
二、教学目标:
1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。
2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
三、教学重、难点:
1.教学重点:理解并掌握方程的'意义。
2.教学难点:建立“方程”的概念,并会应用。
四、教学过程:
(一)情境引入
今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)
(二)探究新知
1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)
请同学们仔细观察,在这副图里你获得了哪些信息?
师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。
2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)
3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?
师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)
师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100
4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200
师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300
师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。
5.观察比较:
50+50=100
100+x>100
100+x>200
100+x<300
100+x=250
总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。
像100+x=250这样,含有未知数的等式就是方程。
揭题:今天这节课我们学的就是“方程的意义”。(板书课题)
6.提问:这一个等式是方程吗?为什么?
追问:这两个式子里都含有未知数,它们是方程吗?
思考:你认为一个方程应该符合哪些条件?
(强调:方程既要是等式,又要含有未知数。)
(三)巩固练习
1.判断下面哪些式子是方程,并同桌说一说理由。
35+65=100 8-x=2 y+24
2.4=a×2 x-14>72 15÷b=3
5x+32=47 28<16+14 6(y+2)=42
2.下面哪些天平不能用方程表示?(出示6幅天平图)
用方程表示出剩下天平的数量关系。
(说一说天平两边的数量关系,列方程)
3.用方程表示下面的数量关系。(说数量关系,列方程)
先独立列出方程,再与同桌说一说方程表示的数量关系。
4.猜方程
让学生初步感知:方程一定是等式,等式不一定是方程。
5.写方程,编故事。
6.方程“史话”。
(四)课堂小结
今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?
小学方程的教案10
教材简析
这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。
本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。
教学目标
1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。
3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程
一、创设情境 激趣导入
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)
我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。
【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。
二、合作探究 获取新知
1、找出白鳍豚这组资料的等量关系,用字母表示。
(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?
白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。
(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。
(3)先自己写一写,再与小组内的同学交流。
20xx年只数 + 300只=1980年只数
1980年只数 - 20xx年只数=300只
1980年只数-300只=20xx年只数
(4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。
学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。
(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。
【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。
2、借助天平理解等式的意义。
根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)
像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)
(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)
(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。
提问:你发现了什么?你能想办法让天平平衡吗?
右盘加上50克的砝码,天平平衡了。
(3)天平左盘放入10克砝码,右盘放入20克砝码。
提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)
提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?
10+10=20(板书)
(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。
谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。
20+x=50(板书)
(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的.小方块,右盘放一个200克砝码。
要求:用等式表示出天平左右两边的关系。
50+50=100 4x=200(板书)
(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。
【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。
3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看大熊猫的资料,你获得了哪些信息?
20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。
(2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?
师生总结:
您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数
10x=1600
如果用x表示人工养殖大熊猫的只数,那么x10=1600
(3)学生打开教科书57页,结合图示进一步理解以上等量关系。
【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。
4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看东北虎的资料,你获得了哪些信息?
预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。
(2)提问:根据以上信息你能提出什么问题?
引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。
(3)先自己写一写,再与小组同学交流。
学生汇报:
20xx年的只数3+100=20xx年的只数
列式为: 3X+100=1000 (板书)
画图为:天平的左盘是3个X和一个100,右盘是1000。
提问:这里的X表示什么?(x表示20xx年的只数。)
【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。
5、揭示方程的意义。
(1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?
引导学生分成两类:含有字母的是一类,不含字母的是一类。
我们把含有未知数的这类等式叫做方程。(板书)
(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。
(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?
方程必须含有未知数,还必须是等式。
【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。
三、巩固练习 加强应用
1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。
2、出示自主练习2,看图列方程。
学生独立完成,说说自己是怎样想的。
3、出示自主练习3,填一填。
学生独立完成。
【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。
四、回顾反思 总结提升
谈谈这节课你有哪些收获?
总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。
总设计意图:
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。
小学方程的教案11
教学内容:
教学目的:
1、使学生初步理解列方程解应用题的特点和解题的基本步骤,掌l握列方程解答两步简单应用题的分析方法,能正确地用列方程的方法解题。
2、使学生养成良好的分析审题的解题习惯。
教学重难点:找出题中数量间的相等关系。
教具准备:多媒体课件。教学过程:
一、创设情境,复习导入
1、出示《今天我当家》录像
①、(今天是妈妈的生日,我想用零花钱中的20元买一份礼物送给妈妈,剩下60元捐给希望工程。)
2、指名说出储蓄罐里已经积了多少元钱。
3、让学生说出解法。(算术解、方程解)
4、导人:怎样列方程来解答步数较多的应用题呢?。
5、揭示课题:列方程解应用题。
二、提出问题,尝试解决
1、出示录像
②、(今天正好又是星期天,爸爸说,该由我当家,让妈妈好好休息。早上,我煮好牛奶,拿着爸爸给我当家的钱就上街买了三个特香包,每个4元,还剩下98元。你猜猜,我爸爸到底给我多少钱当家呢?)
2、学生列方程解答。
3、指名回答,并说说是怎么想的。原有的钱数—用去的钱数=剩下的钱数。
解:设给我x元钱当家。
x —4×3=98
x —12=98
x =110
答:给我110元钱当家。
4、检验。
把x=110代入原方程,左边=11o—4×3×4=110—12=98,右边=98,左边=右边,所以x=110是原方程的解。
5、出示录像
6、让不同列法的学生说说他是怎么想的`。
7、学生总结列方程解应用题的一般步骤。
8、看书质疑。
三、巩固练习
1、张艳从食品橱里取出3袋面粉包饺子,用去1.2千克,还剩0.3元千克,每袋面粉多少千克?
2、张艳把8朵鲜花插到花瓶章中,这时爸爸捧回2束同样朵数的笔鲜花,现在一共有20朵,爸爸问:我捧回的鲜花每束有多少朵?找出题中数量间的相等关系后列出方程。
四、总结
通过这节课学习,有什么收获?
五、开放性练习
出示录像④。
(忙了一整天,一顿丰盛的晚餐总算准备好了。我数了数钱,还剩下才46元,于是来到水果摊前,看到苹果j每千克5元、梨每千克4元、草莓每1千克8元、桔子每千克3元。可我犯难了,除了买水果外,还得留下18j元买生日蛋糕。)小组讨论,汇报可以怎么买。
六、作业
课本第78页第2.3两题。
教学设想
国本课教学设计力求体现:改变课程内容繁、难、窄、旧和偏重书本知识的现状,加强课程内容与学习生活以及现代社会发展的联系,关注学生的学习兴趣和经验,精选包括信息技术在内的终身学习必备的基础知识和技能。
1、改革例题呈现方式,增大学生探索空间。
数学的学习不应成为简单的概念、法则、公式的掌握和熟练的过程,而应该更具有探索性和思考性,鼓励学生经历数学的学习过程,让学生在解决问题的过程中发展学生的探索与创新精神。基此认识,我们把要讲解的例题变成适合学生探究瓶的素材,呈现出真实的有探讨价值的实际生活问题情境,以《今天我当家》中的上街购物用钱找钱的实际情境,让学生在尝试解决身边具体问题的过程中学习数学,体验数学的价值,逐步掌握解决问题的方法,而且增强应用数学的信心,学会用数学的思维方式去观察、分析社会,去解决日常生活中的问题,从而增强学生的数学意识。
2、突破练习常规作法,激发学生发散思维。
现代的数学教育观认为,每个学生都可以学数学,不同的学生要学不同水平的数学,允许学生以不同的方式去学数学。只有个性化的学习,才能使不同的人学到不同的数学,得到不同的发展。教师所要做的,就是让这些具有不同思维特点的学生有机会表达自己的思想,而不是用统一的模式要求所有的学生。为此,我们打破传统教学的"巩固练习"常规,把数学教学与儿童的生活实际紧密结合起来,在课堂上设计富有情趣的数学教学活动,提供具有一定开放性、灵活性、多变性的生活情境,给学生的求异思维创设了一个广阔的空间,有助于激发学生的创新意识,养成创新习惯,发展思维的创造性,提高学生分析问题、解决问题的能力o采取合作学习、自主探索的方式,面向全体,满足不同层次学生的需要,以促使学生主动参与学习,真正体现学生的主体性。
3、优化数学建模过程,加强学生思维训练。
以真实生活的原型进行数学建模,通过建模解模培养学生的抽象思维能力。根据学生的认知规律和思维特点,结合教学内容,积极创设思维情境,引导学生在视听采顿有关数据中掌握多种类型的问题特点的基础上将应用问题与数学问题联系起来,从己知的数量关系推理、联想、判断出属于哪类问题,如本节课的开放性练习,建立相应的数学模型之后,运用数学知识和方法来解答纯数学问题。学生解答应用题的过程就是在获取问题信息、理解题意的基础上,把实际问题抽象转化成数学问题,建立相应的数学模型,—再利用数学知识对数学模型进行分析研究,得到数学答案,然后再把数学答案返回到实际问题中去。即引导学生解模的过程正是对学生思维训练的过程,从而培养学生思维的科学性、深刻性、灵活性、多样性。
本节课的设计力求体现上述要求的同时,还注意智能培养与情感教育的关系,着眼于全面素质的培养和提高。同时把课堂知识引向广—阔社会,引向学生生活,让学生在密切联系生活实际中获得信息,体验情感,增强市场经济意识,学会理财,学会当家作主。
小学方程的教案12
设计说明
1.创设情境,引入新课。
数学教学中,教师要不失时机地创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。上课伊始,由学生喜欢的体育运动这一话题引入本节课的情境,拉近了课本与学生的距离,使学生产生浓厚的学习兴趣。
2.重视解题方法的教学。
“授之以鱼不如授之以渔”,解决问题的教学,关键是理清思路,教授方法,启迪思维,提高解题能力。因此在这节课的教学中,首先让学生观察图画,了解画面信息,接着组织学生小组交流,分析数量关系,讨论解决问题的方法。在列方程解决问题的过程中,通过设计关键问题,层层深入引导学生讨论交流,使学生学会写设句,并根据题中的数量关系列出方程。最后引导学生总结列方程解决问题的步骤,使学生对本节课的知识有一个系统的认识。
课前准备
教师准备PPT课件学情检测卡课堂活动卡
学生准备练习卡片
教学过程
⊙创设情境,谈话导入
师:同学们都喜欢什么体育运动?
生:排球、乒乓球、篮球、足球……
师:你知道吗?有一个小朋友叫小明,他跟你们一样,也非常喜欢体育运动,更是在学校的跳远比赛中破了纪录,你们想知道学校原来的跳远纪录是多少吗?这节课我们就来列方程解决这个问题。(板书课题)
设计意图:把学生感兴趣的话题引入到新知的学习中,通过创设情境使学生感受到生活中处处有数学,从而对本节课的知识产生探究欲望,这样的设计过渡自然、顺理成章。
⊙探究新知
1.教学例1,出示情境图。
(1)写用字母x表示未知数的`设句。
师:请同学们认真观察情境图并说说从中获取了哪些信息。
预设生1:小明的跳远成绩为4.21m,超过原纪录0.06m。
生2:这道题让我们求学校原跳远纪录是多少米。
师:应该设谁为x?怎样把x表示什么写清楚?
生:这道题要求学校原跳远纪录是多少米,应设学校原跳远纪录为xm。
(2)找出题中的等量关系,列出方程。
师:你能找出题中的等量关系吗?
(生讨论后汇报:原纪录+超出部分=小明的成绩)
师:你能根据等量关系列出方程吗?以小组为单位讨论。
(生小组讨论后汇报:x+0.06=4.21)
(3)解方程并检验。
师:请同学们试着解方程。
(生尝试完成解题全过程并汇报)
教师根据学生汇报,板书解题过程:
例1解:设学校原跳远纪录是xm。
x+0.06=4.21
x+0.06-0.06=4.21-0.06
x=4.15
,答:学校原跳远纪录是4.15m。
生检验并交流方法。
预设生1:把x=4.15代入原方程,看方程左右两边是否相等,如果相等就说明做对了。
生2:把x=4.15代入原题中,看看和原题的已知条件是否相符,如果相符就说明做对了。
小学方程的教案13
教材分析
课标对本节内容的要求:
⑴能从现实生活中发现并提出简单的数学问题;⑵能探索出解决问题的有效方法,并试图寻找其他方法;⑶在解决问题的活动中初步学会与他人合作;⑷能表达解决问题的过程,并尝试解释所得的结果;⑸具有回顾与分析解决问题的意识。概括归纳就是⑴培养学生发现数学问题的意识;⑵重视学生解决问题的过程,培养学生形成解决问题的基本策略;⑶培养学生与他人合作的意识;⑷培养学生形成评价与反思的意识。
本节内容与前后教材内容的逻辑联系:
学习本节内容是在学生学习了用字母表示数量关系、方程的意义、等式的基本性质和解方程的知识后,利用列方程来解决实际问题。
学习本节内容的.作用:
⑴进一步拓展学生解决实际问题的思路和方法,掌握用列方程解决问题的思考方法和特点,初步体会列方程解决问题的优越性。⑵使学生进一步感受数学与现实生活的联系,培养学生初步的代数思想,发展学生利用列方程解决一些简单实际问题的应用意识。⑶培养学生根据具体情况,灵活选择算法的能力。
学情分析
1、 教师主观分析:
本班共有18名同学,学习基础较好,能独立思考,具有一定的分析问题和解决问题的能力的同学占到全班的33℅ ,学习基础薄弱,数学基础知识、基本技能不能完全理解和掌握,缺乏分析问题和解决问题的能力的同学占到39℅,其他同学学习水平中等偏下。
2、 学生认知发展水平分析:
大多数同学对学过的基础知识和基本技能基本掌握,对于简单的实际问题能够解答。本节课的教学重点应放在引导学生分析并找出等量关系,学会解形如(a+x)b=c这样的新方程。教师在教学时应采用“先扶着学生走,再让学生试着走,最后让学生独立走”的教学策略。
3、 学生认知的障碍点:
①如何去分析、找出数量间存在的等量关系,然后依据等量关系列方程解应用题。②如何解形如(a+x)b=c这样的新方程。
教学目标
1、知识与技能:
能够结合具体情境使学生掌握根据两积之和的数量关系列方程。②会把方程中含有小括号的式子看作一个整体来求解的思路和方法。③使学生通过学习两积之和的数量关系来理解两积之差、两商之和的数量关系,培养学生举一反三的能力。
2、数学思考:
学生能够正确地审题、分析题意,思考、分析找出两积之和的数量关系。②经历算法多样化的过程,运用迁移类推的方法解决实际生活中的数学问题。
3、情感与态度:
在观察、思考、探究、交流中,在解决实际问题的过程中,体会数学与现实生活的密切联系,了解数学的价值,增进学生学好数学的信心。
小学方程的教案14
教材分析
1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。
2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。
学情分析
1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。
2、学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。
3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。
教学目标
1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。
2、掌握解方程的步骤和书写格式。
3、提高学生分析问题并用数学知识解决问题的能力。
4、培养学生进行数学探究的`能力及合作意识。
教学重点和难点
1、本节课的重点是:根据等式的性质解方程。
2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。
教学过程
一、复习导入:
1、什么叫方程?什么叫方程的解? 什么叫解方程?
2、前面,我们学习了两个等式保持不变的规律,等式的不变规律是什么?
等式这些规律在方程中同样适用吗?
今天我们就学习如何利用等式保持不变的规律来解方程。
二、探究新知:
1、电脑出示课件例1。
2、从图中可以获取哪些信息?图中表示了什么样的等量关系?
要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?
3、探究怎样解方程。
利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?
(让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)
4、知识迁移。
把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?
(方程两边同时减去一个3,左右两边仍然相等。)
板书+3—3=9—3
x=6
5、追问:左右两边同时减去的为什么是3,而不是其它数呢?
(因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)
6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的解)
8、学生练习:解方程(X+21=32 X+41=50)
9、学生讨论交流:解X+a=b这类方程的思路是什么?
10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?
11、学生尝试解方程:X—3=9
12、学生讨论交流:解X—a=b这类方程的思路是什么?
13、小结:解X+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)
三、巩固练习:
1、填一填(出示课件)。
使学生进一步加深理解和运用等式不变规律1解决问题实际问题。
2、书上“做一做”第1题(1)题
3、巩固尝试:解方程(出示课件)。
让学生独立完成会用等式不变规律1解方程,强调验算。
四、课堂总结:
通过这节课的学习,你都有哪些收获?
五、拓展活动:
利用课余时间小组内探究像32—X=10这类方程可以怎样解?
六、作业设计:
练习十一第5题一二行,第6题一行。
小学方程的教案15
设计说明
1、引导学生边观察、边思考,提高自主学习能力。
《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。 2。引导学生辨方程、写方程,重视学情反馈。
数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。
课前准备
教师准备:PPT课件、学情检测卡、课堂活动卡
学生准备:小黑板、练习卡片
教学过程
情境引入,体会“等”与“不等”
师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。
师:两个班最后的'比分是几比几?(学生回答,教师板书:x+1∶4)
师:哪个班赢了?你能用一个数学式子来表示吗?
(学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)
师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)
设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。
情境呈现,抽象模型
1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)
自学提示:
(1)理解教材62页每幅图画及对应式子的含义。
(2)标示出你认为重要的内容。
(3)思考:方程应该具备哪几个条件?
(4)结合你对方程概念的理解,完成教材63页“做一做”1题。
2、合作学习。
(1)你能自己写几个方程吗?小组内互相订正。
(2)组内交流收获。在小组内互相说一说:你学到了什么?
由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。
(3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。
(此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)
预设:
①全班同学的答案一致,全对。
②一部分小组全对,一部分小组有错误。
这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。
3、整理分类,加深对方程意义的理解。
(1)组织学生分组活动,根据黑板上的算式特点进行分类。
(2)交流汇报,说出分类依据。教师板书。
4、独立完成教材63页“做一做”2题,汇报,集体订正。
5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。
【小学方程的教案】相关文章:
《方程》教案11-01
方程的教案04-13
《解方程》小学数学教案08-03
圆的方程的教案09-16
《方程的意义》教案10-25
《方程》教案范文08-24
“解方程”教案04-26
认识方程教案02-21
解方程教案12-04
《方程的意义》教案05-16