高二数学教学计划

时间:2024-09-10 10:32:29 教学计划

高二数学教学计划通用15篇

  时间过得可真快,从来都不等人,相信大家对即将到来的工作生活满心期待吧!让我们对今后的工作做个计划吧。相信大家又在为写计划犯愁了吧?以下是小编为大家整理的高二数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

高二数学教学计划通用15篇

高二数学教学计划1

  一、教材依据

  本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

  七、教学过程

  问 题

  师生活动

  设计意图

  1、在直线坐标系内确定一条直线,应知道哪些条件?

  学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。

  使学生在已有知识和经验的基础上,探索新知。

  2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。

  学生根据斜率公式,可以得到,当 时, ,即

  (1)

  教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

  培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。

  3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?

  学生验证,教师引导。

  使学生了解方程为直线方程必须满两个条件。

  (2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?

  学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.

  使学生了解方程为直线方程必须满两个条件。

  4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

  学生分组互相讨论,然后说明理由。

  使学生理解直线的点斜式方程的适用范围。

  5、(1) 轴所在直线的方程是什么? 轴所在直线的方程是什么?

  (2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  (3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  教师学生引导通过画图分析,求得问题的解决。

  进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

  6、例2、例4的教学。

  教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

  学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的`两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

  7、例3的教学。

  求经过点 ,斜率为 的直线 的方程。

  学生独立求出直线 的方程:

  (2)

  在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

  引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

  8、观察方程 ,它的形式具有什么特点?

  学生讨论,教师及时给予评价。

  深入理解和掌握斜截式方程的特点?

  9、直线 在 轴上的截距是什么?

  学生思考回答,教师评价。

  使学生理解“截距”与“距离”两个概念的区别。

  10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?

  学生思考、讨论,教师评价、归纳概括。

  体会直线的斜截式方程与一次函数的关系.

  11、课堂练习第65页练习第1,2,3题。

  学生独立完成,教师检查反馈。

  巩固本节课所学过的知识。

  12、小结

  教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

  使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

  13、布置作业:第77页第5题

  学生课后独立完成。

  巩固深化

  八、教学反思

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。

  本节课的基本题形:

  1、已知直线上一点及直线的倾斜角,求直线的方程并作图;

  2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。

高二数学教学计划2

  一、指导思想:

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。立足学生的实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、学生基本情况分析:

  1、基本情况:高二10个理科班,4个文科班,每个班的学生对数学学习各不相同。其中,1—6班为实验班,大部分人,基础较好,数学学习兴趣较为浓厚。还有些学生对自己学习数学的信心不足,学习积极性和主动性不够,大部分学生学习上只满足完成老师所布置的任务,对于灵活运用知识分析问题、解决问题的能力还不够强,不能举一反三进一步挖深问题,在选例题时尽量选中等难度题目,以适应大多数学生的适应能力。

  三、教学目标

  针对以上问题的出现,在本学期拟订以下目标和措施。其具体目标如下:

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  四、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学措施:

  1、抓好课堂教学,提高教学效益。 课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。

  ①认真落实,搞好集体备课。每周至少进行一次集体备课,星期一的上午升旗后至第二节课结束。每位老师都要提前一周进行单元式的备课,集体备课时,由两名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  ②加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的'精神,逐步形成知识体系,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2、加强课外辅导,提高竞争能力。 课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  ①加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。

  ②加强对双差生的辅导。双差生是一个班级教学成败的关键,因此,我将下大力气辅导双差生,通过个别或集体的方法进行耐性教学,从而使他们的纪律以及数学成绩有一定的进步。

  3、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

  六、教学进度安排

  本学期授课时间约为20周,本学期的教学任务:

  第一学段:数学必修3;

  第二学段:理科2-1。另完成选修4—5,和选修4—4的教学任务,保证完成教学任务。

高二数学教学计划3

  一、教学目标

  (一)知识与技能

  1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.

  2.理解并掌握几何概型的概念.

  3.掌握几何概型的概率公式,会进行简单的几何概率计算.

  (二)过程与方法

  1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.

  2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.

  (三)情感、态度、价值观

  1.让学生了解几何概型的意义,加强与现实生活的`联系,以科学的态度评价一些随机现象.

  2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.

  二、教学重点与难点

  教学重点:了解几何概型的基本特点及进行简单的几何概率计算.

  教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.

  三、教学方法与教学手段

  教学方法:“自主、合作、探究”教学法

  教学手段: 电子白板、实物投影、多媒体课件辅助

  四、教学过程

  五、板书:几何概型的概念:设D是一个可度量的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点。

  这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比。

  我们把满足这样条件的概率模型称几何概型.

  板书:几何概型的概率计算公式:

高二数学教学计划4

  教学目标:

  1. 知识与技能目标:

  (1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;

  (2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”

  的思维方法,并注意理解推导“割圆术”的操作步骤。

  2. 过程与方法目标:

  (1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻

  辑思维能力;

  (2)学会借助实例分析,探究数学问题。

  3. 情感与价值目标:

  (1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;

  (2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  教学重点与难点:

  重点:了解“更相减损之术”及“割圆术”的算法。

  难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。

  教学方法:

  通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑

  结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。

  教学过程:

  教学

  环节 教学内容 师生互动 设计意图

  创设 情境

  引入新课 引导学生回顾

  人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的.内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。

  教师引导,学生回顾。

  教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。

  通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  阅读课本 探究新知

  1. 求两个正整数最大公约数的算法

  学生通常会用辗转相除法求两个正整数的最大公约数:

  例1:求78和36的最大公约数

  (1) 利用辗转相除法

  步骤:

  计算出78 36的余数6,再将前面的除数36作为新的被除数,36 6=6,余数为0,则此时的除数即为78和36的最大公约数。

  理论依据: ,得 与 有相同的公约数

  (2) 更相减损之术

  指导阅读课本P ----P ,总结步骤

  步骤:

  以两数中较大的数减去较小的数,即78-36=42;以差数42和较小的数36构成新的一对数,对这一对数再用大数减去小数,即42-36=6,再以差数6和较小的数36构成新的一对数,对这一对数再用大数减去小数,即36-6=30,继续这一过程,直到产生一对相等的数,这个数就是最大公约数

  即,理论依据:由 ,得 与 有相同的公约数

  算法: 输入两个正数 ;

  如果 ,则执行 ,否则转到 ;

  将 的值赋予 ;

  若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;

  输出最大公约数

  程序:

  a=input(“a=”)

  b=input(“b=”)

  while a<>b

  if a>=b

  a=a-b;

  else

  b=b-a

  end

  end

  print(%io(2),a,b)

  学生阅读课本内容,分析研究,独立的解决问题。

  教师巡视,加强对学生的个别指导。

  由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

  由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

  教师将两种算法同时显示在屏幕上,以方便学生对比。

  教师将程序显示于屏幕上,使学生加以了解。 数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

  求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。

高二数学教学计划5

  数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。小编准备了高二第一学期数学文科教学计划,具体请看以下内容。

  一、指导思想:

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  二、教学目标:

  (一)情意目标:

  (1)通过分析问题的方法的教学,培养学生的学习兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识。

  (二)能力要求:

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。

  (3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  三、教学内容

  本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。

  立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的.能力以及几何直观能力。

  直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  二元一次不等式(组)与简单的线性规划问题是不等式的重要应用,也是数学实际应用的重要形式之一。本节要求学生能识别不等式(组)表示的区域,并能根据区域正确地用不等式(组)来表示,能解决简单的实际问题。

  常用逻辑包括命题及其关系、充要条件、简单的逻辑联结词和全称量词与存在量词

  通过学习使学生理解命题的概念,了解若,则形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的含义;了解逻辑联结词或、且、非的含义;理解全称量词和存在量词的意义、能正确地对含一个量词的命题进行否定。

  圆锥曲线研究的对象是椭圆、双曲线、抛物线,使用的方法也是代数方法。这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式的变形,这对学生能力的要求较高。坐标方法是要求学生掌握的。但是,对学生的要求不能过高,只能以绝大多数学生所能达到的程度为标准。

高二数学教学计划6

  一,学生的基本情况

  118班66人,115班48人。118班学习数学的氛围很浓。但由于高一的函数部分基础较差,对高二乃至整个高中的数学学习影响很大。数学成绩或多或少都有尖子生,但如果能认真复习函数部分,学生努力,前途无量。如果我们能很好地引导他们,进一步培养他们的学习兴趣,…

  二,教学要求

  (a)情感目标

  (1)通过问题分析方法、一个不等式问题的多解、一个不等式问题的多解、一个不等式问题的多重证明的教学,培养学生的学习兴趣。

  (2)提供生活背景,让学生体验不等式、直线、圆以及围绕它们的圆锥曲线,培养运用数学学习数学的意识。

  (3)探究不等式和二次曲线的本质,体验获得数学规律的艰辛和乐趣,学会小组合作学习中的交流和相互评价,提高学生的合作意识

  (4)以情感目标为基础,规范教学过程,增强学习信念和信心。

  (5)给学生时间和空间、班级和探索发现的权利,给学生自主探索和合作的机会,在发展思维能力的同时,培养学生的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——个挫折3354个矛盾——个顿悟——个新发现”的科学发现过程的神奇

  (2)能力要求

  1.培养学生的记忆能力。

  (1)在研究不等式的性质、平均不等式、思维方法和逻辑模式时,进一步培养记忆能力。让记忆准确持久,快速正确的重现。

  (2)通过对定义和命题的整体结构的教学,可以揭示它们的本质特征和相互关系,培养对数学本质问题的背景事实和具体数据的记忆。

  (3)通过揭示解析几何的概念、公式和视值之间的对应关系,培养记忆能力。

  2.培养学生的计算能力。

  (1)通过解不等式和不等式组的训练,训练学生的运算能力。

  (2)加强概念、公式、规则的清晰性和灵活性的教学,培养学生的计算能力。(3)通过分析方法的教学,提高学生在操作过程中清晰、合理、简单的能力。

  (4)通过一题多解、一题多变,培养正确、快速、合理、灵活的计算能力,促进知识的渗透和传递。(5)利用数字和形状的结合,寻找另一种提高学生计算能力的方法。

  3.培养学生的思维能力。

  (1)通过用参数求解不等式,培养学生的思维缜密和逻辑思维。

  (2)通过多解、多解、多证分析几何和不等式,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过推广和普及不等式培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生数形结合的能力。(5)通过解析几何的概念教学,培养学生的正向思维和逆向思维能力。

  (6)通过典型例题的不同思路分析,培养思维的.灵活性是学生掌握思维转化的途径。

  4.培养学生的观察能力。

  (1)在比较和鉴别中,提高观察的准确性和完整性。(2)通过对人格特征的分析研究,提高观察深度。(3)知识要求

  1、掌握不等式的概念、性质和证明不等式的方法,不等式的解法;

  2.通过直线和圆的教学,学生可以了解解析几何的基本思想,掌握

  (2)难点1。不等式的解包括绝对值和不等式的证明。2.角度公式、点到直线距离公式的推导及简单线性规划的求解。

  3.用坐标法研究几何问题,寻找曲线方程的一般方法。

  五.教学措施

  1.在教学中,要将传授知识与培养能力相结合,充分调动学生的学习主动性,培养学生的概括能力,使学生掌握数学的基本方法和技能。

  2.坚持与高三接触,踏实面对高考,以数学五大思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生学习负担。

  3.加强教育教学研究,坚持学生主体性原则,循序渐进,启发性。研究并采用基于“发现教学模式”的教学方法,全面提高教学质量。

  4.积极参与和组织集体备课,共同学习,努力提高教学质量

  5.坚持听同龄人讲课,取长补短。互相学习,共同进步。

  6.坚持学习方法,加强个别辅导(差生和优等生),提高全体学生的整体数学水平,培养尖子生。

  7.加强数学研究性课程的教学和研究指导,培养知识的实践能力。

  第六,课表

  这学期有81个课时。1.不等式18课时

  2.直线圆方程25课时

  3.圆锥曲线20课时

  4.研究班18小时

高二数学教学计划7

  一、指导思想

  努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的.创新精神,运用数学的意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。

高二数学教学计划8

  一、教材分析

  1.教材所处的地位和作用

  在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。

  2.教学的重点和难点

  重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。

  难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。

  二、教学目标分析

  1、知识与技能 :

  (1)了解随机数的概念;

  (2)利用计算机产生随机数,并能直接统计出频数与频率。

  2、过程与方法:

  (1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;

  (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯

  3、情感态度与价值观:

  通过数学与探究活动,体会理论来源于实践并应用于实践的'辩证唯物主义观点.

  三、教学方法与手段分析

  1、教学方法:本节课我主要采用启发探究式的教学模式。

  2、教学手段:利用多媒体技术优化课堂教学

  四、教学过程分析

  布置练习:

  课本练习 3、4

  「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  五、板书设计

  3.2.2(整数值)随机数的产生

  问题解答: 课堂检测:

高二数学教学计划9

  一、有计划的安排一学期的教学工作计划:

  新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划及讨论如何响应学校的号召,开展主体式教学模式

  的教学改革活动。

  一个完整完善的工作计划,能保证教学工作的顺利开展和完满完成,所以一定要加以十二分的重视,并要努力做到保质保量完成。

  在以后的教学过程中,坚持每周一次的关于教学工作情况总结的备课组活动,发现情况,及时讨论及时解决。

  二、定时进行备课组活动,解决有关问题

  备课组将进行每周一次的活动,内容包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的动态、数学教学的改革与创新等。一般每次

  备课组活动都有专人主要负责发言,时间为二节课。经过精心的准备,每次的备课组活动都将能解决一到几个相关的问题,各备课组成员的教学研

  究水平也会在不知不觉中得到提高。

  三、积极抓好日常的教学工作程序,确保教学工作的有效开展

  按照学校的要求,积极认真地做好课前的备课资料的搜集工作,然后集体备课,制作成教学课件后共享,全备课组共用。一般要求每人轮流制作,

  一人一节,上课前两至三天完成。每位教师的电教课比例都要在90%以上。每周至少两次的学生作业,要求全批全改,发现问题及时解决,及时在

  班上 评讲,及时反馈;每章至少一份的.课外练习题,要求要有一定的知识覆盖面,有一定的难度和深度,每章由专人负责出题;每章一次的测验

  题,也由专人负责出题,并要达到一定的预期效果。

  四、积极参加教学改革工作,使学校的教研水平向更高处推进

  本学期学校全面推行主体式的教学模式,要使学生参与到教学的过程中来,更好地提高他们学习的兴趣和学习的积极性,使他们更自主地学习,学

  会学习的方法。积极响应学校教学改革的要求,充分利用网上资源,使用分组讨论式教学,充分体现以学生为主体的教学模式,不断提高自身的教

  学水平。

高二数学教学计划10

  数学分析

  1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。

  2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的'数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

  3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

  4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  教育分析

  1。有助于学生数形结合思想的培养。

  解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的'重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

  2。是培养学生运算能力的重要载体。

  运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  课标解读

  1。整体定位

  “解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

  “解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

  2。具体要求

  (1)直线与方程

  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的`过程,掌握过两点的直线斜率的计算公式;

  ③能根据斜率判定两条直线平行或垂直;

  ④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  ⑤能用解方程组的方法求两直线的交点坐标;

  ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

  (2)圆与方程

  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

  ③能用直线和圆的方程解决一些简单的问题。

  (3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

  (4)空间直角坐标系

  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

  3。课标解读

  (1)要注重知识的发生与发展的过程

  解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

  数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

  比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

  (2)在高中阶段,直线的斜率一般一般有三种表示方式

  ①用倾斜角的正切

  这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

  这需要先引入0°到180°的正切函数的概念。

  ②用向量

  内容结构

  1。知识内容

  2。 章节安排

  本章教学时间约需18课时,具体分配如下:

  1 直线与直线的方程 8课时

  2 圆与圆的方程 5课时

  3 空间直角坐标系 3课时

高二数学教学计划11

  这学期对于我来说,是一个挑战,因为本学期我接手了两个理科班。以前我带的始终是文科班,对于文科班的学生的情况比较理解,但对于理科班来说,我不知道他们对学习会有怎样的想法与做法。高二七班与八班在人数上基本一致,但通过我的了解,两班还是有一定的差距:七班学生活泼且聪明的学生也大有人在,但是不学习的比较多,甚至有些学生已经彻底放弃了;八班的学生比较老实些,每个人都在认真学,但是数学成绩没有七班那么突出,而且学生在课堂上表现的也不是很积极。针对这两个陌生的理科班,本学习我制定了如下的教学计划:

  一、指导思想

  在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为20xx年的高考做准备,为学生今后的发展打下坚实的数学基础。

  二、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:

  基础练习→典型例题→作业→课后检查

  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。

  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。

  (4)课后检查;重点检查改错本及复习资料上的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5.注重对所选例题和练习题的把握:

  (1)注重对“四基五能力”的考察把握,贴近课本;

  (2)注重学科内容的联系与综合;

  (3)注重数学思想方法、通性、通法,淡化特殊技巧;

  (4)注重能力立意,以考察学生逻辑思维能力为核心,全面考察能力;

  (5)注重考查学生的创新意识和实践能力,设计应用性、探索性的问题;

  (6)试题体现层次性、基础性,梯度安排合理,坚持多角度,多层次的考察,有效地检测对数学知识中所蕴含的数学思想和方法掌握的程度。

  (7)精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试说明的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。

  6.周密计划合理安排,现数学学科特点,注重知识能力的.提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。

  7.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。

  三、对自己的要求——落实教学的各个环节

  1.精心上好每一节课

  备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

  2.严格控制测验,精心制作每一份复习资料和练习

  教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用。注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。

  3.做好作业批改和加强辅导工作

  我们的工作对象是活生生的对象──学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,不仅要给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变“要我学”为“我要学”。

高二数学教学计划12

  一,教学内容

  这学期按照教育局教研室的要求,教学任务比较重。选修1-1,第三章《导数》,根据教研室的计划,应该安排在春节前。鉴于期末考试临近,这一章没有学习,所以这学期的教学内容有以下几个部分:选修1-1 《导数》,选修1-2,共四章《统计案例》,《推理与证明》,《数系的扩充与复数的.引入》。

  二,教学策略

  根据年山东省高考数学(文科)大纲的要求,应及时调整教学计划,切实重视学生学习的实施,让学生的学习成为有效的劳动。精心备课,精心指导,针对目标学生不放松,努力使目标学生数学成绩有效,积极交流,提高教学水平,同时认真学习《框图》,学习新课程,应用新课程。

  第三,具体措施

  这学期我主要从以下几个方面做好教学工作:

  1、注重学习计划指导学习,善用好学案例。注重研究老师如何说话,就是注重研究学生如何学习。

  2.尽量分层次做作业,尤其是加餐,提高尖子生的学习成绩。

  3.特别注意学生作业的落实,不定时查看学生的集锦和作业本。

  4.组织单位通过,做好试卷讲评工作。

  5.积极沟通目标学生的想法和感受

高二数学教学计划13

  一、本课教学内容的本质、地位、作用分析

  (一)教材所处的地位和前后联系

  本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

  (二)教学重点

  ①简单随机抽样的概念,

  ②常用实施方法:抽签法和随机数表法

  (三)教学难点

  对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.

  二、教学目标分析

  1、知识目标

  (1)理解并掌握简单随机抽样的概念、特点和步骤.

  (2)掌握简单随机抽样的两种方法:抽签法和随机数表法.

  2、能力目标

  (1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.

  (2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学 问题的现象,加强观察问题、分析问题和解决问题的能力培养.

  3、情感、态度目标

  (1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.

  (2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.

  三、教学问题诊断

  本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

  如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

  1、创设情境,揭示课题

  用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题: 如何收集数据? 请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)

  2、学法指导,研探新知

  思考1:

  从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?

  一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?

  思考2:

  从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?

  一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?

  规律总结:

  一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。 .

  3 实际运用,巩固升华

  简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?

  ①抽签法

  提出问题学校要进行庆典,每个班到主会场观看节目有6个名额,高二(24)班共有57人,怎样分这6个名额? 要求:每个学生获得名额的概率相等小组讨论设计操作步骤。

  . 学生很容易联想到抽签法这时我又抛出一个问题:那如何实施抽签法?学生能根据生活中的经验来实施抽签法引导学生从解决这个问题的方法得出抽签法的一般步骤:

  先将总体中的所有个体(共有N个)编号(号码可从1到N)并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.

  ②随机数表法

  请你设计分配方案:

  5·12特大地震后,都江堰某地区198户地震损毁户需要搬进安居房,规模创造了全国之最.近期首批20套安居房准备发放.要求:每户首批获得安居房的概率相同 ,从而提出随机数表法的概念

  随机数表法:为了简化制签过程,我们借助计算机来取代人工制签,由计算机制作一个随机数表,我们只需要按照一定的规则,到随机数表中选取在编号范围内的数码就可以,这种抽样方法就是随机数表法。

  步骤:

  (1)将总体中的所有个体编号(每个号码位数一致)

  (2)在随机数表中任取一个数作为开始。

  (3)从选定的数开始按一定的方向(或规则)读下去,得到的'号码若不在编号中,则跳过;若在编号中则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止。

  (4)根据选定的号码抽取样本。

  4、动手操作,合作交流

  学生亲自动手进行抽签,体会抽签的公平性。

  5、承上启下,留下悬念

  回到开篇提到的实际问题,引出抽样还有其他方法。

  四、教法分析和学法指导

  (一)教法分析

  1、讨论法与自学法相结合

  改变传统的把学生看作是接受知识的“容器”的现象.让学生参与到教学活动的全过程中来,体现学生参与的主体地位,使学生手、脑、口并用,主动地获取知识,允许学生争论,在讨论中加深学生对知识的理解与掌握.如在解决“整个抽样过程中每个个体被抽到的概率是相等的”时组织学生讨论,在讨论的过程中使学生对这一难点有一个清楚的认识;又如在学习随机数表法时组织学生自学,既提高了学生独立学习、主动获取知识的能力又能满足学生在自学的过程中获得的成就感从而培养了自信心.

  2、指导法

  结合一些具体事件,如对用抽签法解决问题等事件进行分析,从而使学生对简单随机抽样过程有一个清楚的认识,加深对简单随机抽样方法的理解.

  3、利用多媒体辅助教学

  (二)学法指导

  (1)通过丰富的例子引入数学知识,引导学生应用数学知识解决实际问题,教会学生从生活中发现数学,学习数学,如学生从生活的实例发现问题得出简单随机抽样方法就是从生活

  中发现数学,用数学解决实际问题.

  (2)教会学生独立思考、自主探索、动手实践、合作交流的学习数学的方式,体现在整个教学过程中,如“研探新知”、“实际运用”等.

  五、预期效果

  学生能够用简单随机抽样方法,解决部分实际问题。

高二数学教学计划14

  一、指导思想:

  在学校教学工作意见指导下,在学部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二.学生基本情况

  高二倾理学生共有166人,学生学习数学的气氛不浓、基础很差。由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,高一数学成绩充分反映没有尖子生,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。

  三、教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的'学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、教学措施:

  1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  2、详细计划,保证练习质量。教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

  五、教学进度表:(略)

  高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学上学期教学计划,希望大家喜欢。

高二数学教学计划15

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的'认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

【高二数学教学计划】相关文章:

高二数学教学计划01-09

高二数学教学计划02-25

高二数学教学计划(优)07-23

高二数学下教学计划06-22

(集合)高二数学教学计划06-22

高二数学教学计划(精)01-13

【优】高二数学教学计划07-05

【荐】高二数学教学计划12-24

高二数学教学计划【推荐】12-25

【精】高二数学教学计划12-26