七年级数学下册教案

时间:2025-01-16 11:19:54 秀雯 教案

七年级数学下册教案(通用20篇)

  作为一位优秀的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么教案应该怎么写才合适呢?以下是小编为大家收集的七年级数学下册教案,希望对大家有所帮助。

七年级数学下册教案(通用20篇)

  七年级数学下册教案 1

  教学目标

  在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

  在推导法则的过程中,培养观察、概括与抽象的能力。

  通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点:同底数幂相乘的法则的推理过程及运用

  难点:同底数幂相乘的运算法则的推理过程

  教学过程

  一、温故知新

  1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

  2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

  3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

  学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

  二、新课讲解

  探究新知

  你能计算出 吗?

  学生解答,教师板书

  那么 等于多少呢?更一般的, 等于多少呢?

  学生回答,教师板书

  你发现运算的方法了吗?

  师生共同概括归纳出同底数幂乘法的法则:

  同底数幂相乘,底数不变,指数相加。

  用公式表示是: (、n都是正整数)

  动脑筋

  当3个或三个以上的'同底数幂相乘时,怎样用公式表示运算的结果呢?

  学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

  三、典例剖析

  例1 计算:(1) ;(2)

  分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

  例2 计算:(1) ;(2)

  让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

  例3 计算:(1) ;(2)

  学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。

  四、课堂练习

  基础训练:

  1.计算:

  (1) ;(2) ;(3) ;(4)

  2.计算:

  (1) ;(2) ;(3) ;(4)

  (学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

  提高训练

  3. 计算 ;(2)

  4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作. 随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

  (用以提升学生运算的灵活性,提高学习兴趣。)

  五、小结

  师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

  六、布置作业

  教材P40 第1题,P41 第12题

  七年级数学下册教案 2

  教学目标:

  1.掌握数轴三要素,能正确画出数轴.

  2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数

  教学重点:

  数轴的概念

  教学难点:

  从直观认识到理性认识,从而建立数轴概念

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示课本P7的“问题”(学生画图)

  (二)合作交流,解读探究

  师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

  【点拨】(1)引导学生学会画数轴.

  第一步:画直线,定原点.

  第二步:规定从原点向右的方向为正(左边为负方向).

  第三步:选择适当的长度为单位长度(据情况而定).

  第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

  对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?

  (2)有了以上基础,我们可以来试着定义数轴:

  规定了原点、正方向和单位长度的直线叫数轴.

  做一做学生自己练习画出数轴.

  试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

  讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

  小结整数在数轴上都能找到点表示吗?分数呢?

  可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.

  (三)应用迁移,巩固提高

  【例1】下列所画数轴对不对?如果不对,指出错在哪里?

  【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

  【例3】下列语句:

  ①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(  )

  A.1个B.2个C.3个D.4个

  【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.

  【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有(  )

  A.1998个或1999个B.1999个或20xx个

  C.20xx个或20xx个D.20xx个或20xx个

  (四)总结反思,拓展升华

  数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的`有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

  (五)课堂跟踪反馈

  夯实基础

  1.规定了、     、的直线叫做数轴,所有的有理数都可从用上的点来表示.

  2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.

  3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是(  )

  A.7 B.-3

  C.7或-3 D.不能确定

  4.在数轴上,原点及原点左边的点所表示的数是(  )

  A.正数B.负数

  C.不是负数D.不是正数

  5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.

  提升能力

  6.与原点距离为3.5个单位长度的点有2个,它们分别是和.

  7.画出一条数轴,并把下列数表示在数轴上:

  +2,-3,0.5,0,-4.5,4,3.

  开放探究

  8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.

  9.下列四个数中,在-2到0之间的数是(  )

  A.-1 B.1 C.-3 D.3

  七年级数学下册教案 3

  【知识与技能】

  1、能用坐标表示地理位置。

  2、要学会建立恰当的平面直角坐标系,要选择一个单位长度表示实际问题中一个恰当的长度。这样才能用较简洁的坐标系标出某个地理位置。

  【过程与方法】

  通过具体的实例体会用坐标表示地理位置的方法。

  【情感态度】

  体验学以致用,提高运用数学知识解决实际问题的能力,激发数学学习兴趣。

  【教学重点】

  用坐标表示地理位置。

  【教学难点】

  建立恰当的平面直角坐标系,并选择一个单位长度表示实际问题中一个恰当的长度是本节难点。

  一、情境导入,初步认识

  问题根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置。

  小刚家:出校门向东走150m,再向北走200m。

  小强家:出校门向西走200m,再向北走350m,最后向东走50m。

  小敏家:出校门向南走100m,再向东走300m,最后向南走75m。

  【教学说明】

  全班同学分组讨论,再交流成果,最后在老师的指导下解决问题。

  二、思考探究,获取新知

  思考:

  1建立怎样的平面直角坐标系?

  2怎样用一个简洁的平面直角坐标系标出某个地理位置。

  【归纳结论】

  1取实际问题中的某一标志物作为原点,以东西方向为x轴,南北方向为y轴,则可用坐标清楚地表示地理位置。

  2建立平面直角坐标系以后,要选择一个单位长度代表实际问题中一个恰当的长度,将地理位置当成一个点,这样就可简明地标出这个地理位置。需要注意的是,写该地理位置的坐标时要写实际问题的数值,这一点与前节所接触的坐标写法不相同,千万不要搞错了。三、运用新知,深化理解

  如图所示,是某市市区几个旅游景点的示意图(图中每个小正方形的'边长为1个单位长度)。请你以某个景点为原点,画出直角坐标系,并用坐标向游人介绍光岳楼、金凤广场、动物园的位置。

  小明:以光岳楼为原点,金凤广场(-2,-1.5),动物园(7,3)。

  小亮:以动物园为原点,金凤广场(-9,-4.5),光岳楼(-7,-3)。

  你同意小明、小亮的介绍吗?你还有别的方法吗?

  【教学说明】

  可让学生自主完成,相互交流,最后师生共同评析,加深对坐标表示地理位置和建立恰当坐标系的理解。

  【答案】

  略。

  四、师生互动,课堂小结

  利用平面直角坐标系绘制区域一些地点分布情况平面图的过程如下:

  (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  (2)根据具体问题确定单位长度;

  (3)在坐标系内画出这些点,写出各点的坐标系和各个地点的名称。

  1布置作业:从教材“习题7.2”中选取。

  2完成练习册中本课时的练习。

  本节课的设计是从学生感兴趣的生活实例入手,遵循学生的认知规律,在学生自主探究,讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性。以实际问题为载体,在探究解决问题策略的过程中,让学生体会平面直角标系在生活中的作用,感悟到数形结合的方法,增强应用数学的意识,提高数学建模的能力;同时还丰富了学生数学活动的经验,让学生学会探索,学会学习。

  【素材积累】

  1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢晶的。它们有时聚成一颗大水珠,骨碌一下滑水里,真像一个顽皮的孩子!

  2、摘有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰凌,一根儿一根像水晶一样,真美啊!我们一个一个小脚印踩摘大地毯上,像画上了美丽的图画,踩一步,吱吱声旧出来了,原来是雪摘告我们:和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜春风来,千树万树梨花开真好看呀!

  七年级数学下册教案 4

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展“用数学”的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。

  2、就第一章而言,多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。

  新课程标准是我们确定教学目标,重点和难点的依据。重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。

  难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。

  二、教材处理

  本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的`进行。

  三、教学方法

  在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。

  2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。

  3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。

  4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标:

  1.理解和掌握多项式除以单项式的运算法则。

  2.运用多项式除以单项式的法则,熟练、准确地进行计算.

  3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

  4.培养学生耐心细致、严谨的数学思维品质.

  重点、难点:

  (1)多项式除以单项式的法则及其应用.

  (2)理解法则导出的根据。

  课时安排:一课时.

  教具学具:多媒体课件.

  授课人及时间:关龙二〇〇七年三月二十九日

  教学过程:

  1.复习导入

  (l)单项式除以单项式法则是什么?

  (2)计算:

  1)–12a5b3c÷(–4a2b)=

  2)(–5a2b)2÷5a3b2 =

  3)4(a+b)7 ÷ (a+b)3 =

  4)(–3ab2c)3÷(–3ab2c)2 =

  找规律:怎样寻找多项式除以单项式的法则?

  尝试练习引入分析

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2.例题解析

  例3计算:见课本P49

  (1)尝试练习

  (2)提问:哪个等号是用到了法则?

  (3)在计算多项式除以单项式时,要注意什么?

  注意:(l)先定商的符号;

  (2)注意把除式(?后的式子)添括号;

  要求学生说出式子每步变形的依据.

  (3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

  练习设计:

  (1)随堂练习P50

  (2)联系拓广P51

  3.小结

  你在本节课学到了什么?

  (1)单项式除以单项式的法则

  (2)多项式除以单项式的法则

  正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

  4.作业

  P50知识技能

  5.综合练习(课件)

  七年级数学下册教案 5

  恰当的信息技术与初中数学教学深度融合,课堂本着以学生为主体,教师为导体的原则,精心设计情境教学活动,为学生营造自主学习和探索交流的学习环境,活跃学生思维,激发学习兴趣.为提高教学质量,利用现代教育技术手段,采用启发式、讨论式、研究式的教学方法,让学生在自主探究、合作交流中提高学习积极性,培养学生分析问题、解决问题的能力。我以北师大版数学七年级下册《两条直线的位置关系》一课为例,谈谈如何应用101教育PPT引导学生由动手操作到理性思考,由自主探索到合作交流,由生活实际到建立模型解决问题,让学生积累数学活动经验,完成对本节知识的探索与交流。

  一、教材分析:

  本节是七下第二章相交线、平行线中的第一节,本节主要是了解平面内两条直线的位置关系,由学生动手画出相交线图形,观察图形产生具有特殊位置关系的对顶角的概念和对顶角相等的性质,由此图产生具有特殊数量关系的余角、补角的概念,由生活实例(打台球)引出并推导余角补角性质采用类比的方法,培养学生观察、推理、归纳等能力。

  二、学情分析:

  学生在小学已经认识了平行线、相交线、角,在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。在前面知识的学习过程中,学生已具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

  基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

  三、教法与学法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,故选用探究式教学主动学习的教学策略以及动手实践,自主探索,合作交流的重要学习方式.引导学生根据现实生活的经历和体验及收集到的信息来理解理论知识。

  2.借用多媒体课件辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生对几何学习方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。

  四、教学目标:

  1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

  2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

  3.情感与态度:激发学生学习数学的兴趣,认识现实生活中蕴含着大量的与数学有关问题,培养学生用数学方法解决问题的能力。

  教学重点:对顶角、余角、补角的概念及性质。

  教学难点:余角、补角性质的应用。

  五、教具准备:

  多媒体课件、三角板

  六、教学过程设计

  新课标指出,数学教学过程是学生在教师指导下的数学学习活动,是师,是教师和学生互动的过程,是师生共同发展的过程。本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:创设情境、引入课题;第二环节:动手实践、探究新知;第三环节:合作交流,再探新知;第四环节: 联系生活,解决问题;第五环节:学有所思,归纳总结; 第六环节:布置作业,能力延伸。

  第一环节 创设情境 引入课题

  活动内容一:两条直线的位置关系

  教师展示一组生活图片,由学生观察图片,回答问题:

  (1)图片中两条直线有哪几种位置关系?

  引入课题:《两条直线的位置关系(1)》

  出示本节教学目标、重难点。

  (2)那么什么叫相交线和平行线呢?

  结论:1.一般地,在同一平面内,两条直线的位置关系有两种;相交和平行。

  2:定义:若两条直线只有一个公共点,我们称这两条直线为相交线。

  在同一平面内,不相交的两条直线叫做平行线。

  【设计意图】:利用生活图片引入课题,让学生体会数学与生活的联系,激发学生学习的兴趣,通过观察总结出同一平面内两条直线的位置关系,经历知识的形成过程中,激发学生学习积极性,从而提高学课堂效率,通过练习加深他们对概念的理解。

  赋能路径:学生对平行线、相交线概念的表述不清楚,对于同一平面的重要性理解不到位,应大胆让学生表述,培养学生的语言表达能力,利用101PPT展示空间中两条异面直线存在既不相交也不平行的位置关系,从而更深入地理解同一平面的意义。

  第二环节 动手实践 探究新知

  动手实践一:

  利用101中的几何画板让学生画出:两条直线AB和CD相交于点O。

  通过观察图形,小组合作交流,尝试用自己的语言描述对顶角的定义。

  赋能路径: 利用多媒体技术让直线CD绕着点O旋转,在旋转过程中发现具有这种位置关系的两角不会随着角度的变化而变化,在利用多媒体出示剪刀模型,随着剪刀的动画,让学生生动形象的理解对顶角相等这一性质,激发学习兴趣,从而突破本节教学重点。

  巩固练习:

  1、下列各图中,∠1和∠2是对顶角的`是( )

  2、如图3所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?

  【设计意图】:通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。从而进一步培养学生抽象几何图形进行建模的能力。设计练习主要是检测学生对顶角的概念及其性质的应用的理解程度,体会数学与生活的联系,增加浓郁的学习氛围。

  课堂实施情况:利用几何画板建立数学模型,提高学生运用信息技术工具来学习数学的兴趣,增强逻辑推理能力教学目标的完成。学生对于对顶角概念的表述不到位,教师应鼓励学生用自己的语言表述,强调反向延长线,规范语言。讨论对顶角相等这一性质时,教师积极引导,让学生充分思考,再合作交流,最后归纳、总结,让学生经历知识的形成过程。

  第三环节 合作交流 、再探新知

  利用学生动手操作画出的图形,探究补角、余角定义

  补角定义:一般地,如果两个角的和是180°,那么称这两个角互为补角。

  余角定义:如果两个角的和是90°,那么称这两个角互为余角。

  强调:互余或互补是指两个角,与角的的位置无关

  【设计意图】:在合作交流中,经历知识的形成过程,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。

  赋能路径:利用几何画板画出的相交线图形,学生通过观察具有补角、余角位置关系的两角给出补角,余角定义,利用多媒体动画展示补角、余角定义与角的位置无关,定义只和两角的和是否是180度或90度有关,让学生更深刻理解补角余角定义,突破本节教学重点。

  巩固练习:

  问题1:指出下列图中,哪两个角互为余角?哪两个角互为补角

  2、图中∠1、∠2、∠3互补吗?

  【设计意图】:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。

  第四环节 联系生活 解决问题

  动手实践二 :

  打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,ON与DC交于点O,∠DON=∠CON=90°,∠1=∠2

  小组合作交流,解决下列问题:在图2.1—8中

  问题1:哪些角互为补角?哪些角互为余角?

  问题2:∠3与∠4有什么关系?为什么?

  问题3:∠AOC与∠BOD有什么关系?为什么?

  归纳:同角或等角的补角相等。

  同角或等角的余角相等。

  巩固练习:

  如图所示, 因为∠1+∠3=180°,∠2+∠3=180°,所以∠1= ,理由是 ________________.

  【设计意图】:通过生动有趣的活动情景,培养学生观察、操作、推理、交流等活动能力,使学生在自主学习的过程中,经历知识形成过程,培养学生抽象几何图形进行建模的能力。通过巩固练习检测学生对余角、补角性质的应用情况。

  赋能路径:利用多媒体动画演示打台球进球路径,更生动形象,吸引学生注意力,激发探索知识的欲望,让学生体会数学源于生活并运用于生活,让学生经历怎么把实际问题转化成数学问题,培养建立数学模型的能力,突破难点。

  课堂实施效果:对于补角、余角的性质的推导是本节课的难点,教师应积极引导学生列出式子,让学生通过观察表达式得出补角的性质,再通过类比补角性质得出余角的性质。在巩固练习中,理由大部分填对顶角相等,对于补角性质的应用多加练习。

  课堂检测:本环节利用多媒体技术设计一个超链接,每组选一道题,根据选题派学生代表回答问题,根据情况得分。

  【设计意图】:本环节是本节课的一个亮点,以小组竞赛的形式完成课堂检测环节,既检测学生对本节重点知识掌握情况,活跃课堂气氛的同时,还培养学生拼搏进取的精神。

  赋能路径:教师提前把设计好的练习提前展示在多媒体上,待新课讲完后,以小组竞赛形式出示,学生有小组竞赛的精神,同学们回答问题积极,并且对于回答不具体的同学,同小组同学积极补充,活跃了课堂气氛,启到了很好的教学效果。

  第五环节 学有所思 归纳总结

  你学到了哪些知识点?

  你学到了哪些方法?

  你认为还有哪些问题?

  【设计意图】:本环节使学生把知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力,体会与同伴分享成果的快乐过程。

  课堂实施情况:学生们积极的对本节知识、学法进行归纳总结,对对不理解的问题课下进行反思。

  第六环节 布置作业 能力延伸

  基础题:1.习题2.1 第 1,2,3,4,5题

  提高题: 2.已知一个角的补角是这个角余角的4倍,求这个角的度数。

  3.如图,将一个长方形纸片按如图所示的方式折叠,使点A落在点A’处,点B落在B’处,并且点E,A’,B’在同一条直线上。

  问题1:∠FEG等于多少度?为什么?

  问题2:∠FEA与∠GEB互余吗?为什么? 问题3:上述折纸的图形中,还有哪些(除直角外外)相等的角?

  【设计意图】:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了作业分层,可以让不同程度的学生都能有不同的收获。

  教学效果及推广:

  课程标准要求初中学生在操作感知的基础上渗透理性思考,以体现自主学习、合作探究理,而七年级大部分学生的自主探索、合作意识不强,但对数学学习有着较浓厚的兴趣,思维比较开阔,在数学课堂中抓住学生的认知水平,从生活实际出发,培养学生学习兴趣、建立自信,亲身经历知识的形成,不断提高学生的观察、探索,合作、归纳等能力。另外班中还存在相当一部分学习有困难的学生,对于这部分学生应给予更多的关注,通过同桌儿小组学习等方式,让能力较强的学生带动这些学生尽量给能力较弱的学生创造表现的机会,使各层次的学生都能在学习中体验成功。

  本课例较好实现了信息技术与传统教学的优势互补,搭建支架帮助学生实现从操作感知到自主探索、合作交流,充分体现学生的主体地位,从而顺应课程改革,提高课堂效率。

  课程建设情况:

  数学来源于生活,又运用于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,激发了学生的学习兴趣,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,体验了知识的形成过程和发现的快乐,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境,同时联系生活,融合建模思想,让学生体会学习数学的乐趣。以小组竞赛的形式完成课堂检测,既对本节重点知识进行了考查,活跃了课堂气氛,又培养了学生拼搏进取的精神。

  启示:课堂上让学生充分发表自己的见解,从激励学生的角度出发,给予学生一个充分展示自我的舞台。在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。

  七年级数学下册教案 6

  教学目标

  1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的'意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  三、应用提高

  活动内容:1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  四、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)?7?8?73

  (5)?6?63(6)?5?53?5?.(7)?a?b?a?b?7542

  2(8)?b?a?a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  五、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  六、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

  1.2幂的乘方与积的乘方(一)

  七年级数学下册教案 7

  教学目标

  1.知道有效数字的概念;

  2.会按要求进行近似数的运算

  教学过程

  一、创设情境,导入新课

  1.什么叫实数?实数怎么分类?

  2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?

  3.做一做

  如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?

  二、合作交流,探究新知

  1 交流上面问题的做法

  (1)估计同学们会有两种做法:

  用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)

  (2)用计算器直接求出的'近似值,用四舍五入取到小数点后面第一位,得:

  如果没有两种做法,也要想办法引出这两种做法

  两种做法的答案不同,哪一种答案正确呢?

  请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?

  这时两种做法的答案就一样了。

  从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。

  2、引入有效数字的概念

  在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?

  先思考:0.010256精确到小数点后面第三位,等于多少呢?

  0.0102560.0103

  近似数0.0103有三个有效数字1、0、3

  现在你能说说,什么叫近似数的有效数字吗?

  从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。

  考考你:1 近似数0.03350有几个有效数字,分别是______________________.

  2 125万保留两个有效数字等于__________

  3 有_______个有效数字。

  3、怎样进行近似值的运算?

  在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。

  例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。

  (2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。

  例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)

  考考你:1.计算(精确到小数点后面第二位)(1),(2)

  2.计算(保留三个有效数字)(1) (2)

  三、应用迁移,巩固提高

  例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?

  变式:上面问题中27倍改为:8倍,其他不变

  例4 已知求a+b的值。

  例5 设a、b为实数,且求的值。

  四、反思小结,拓展提高

  这节课,你认为最重要的是什么?

  1.有效数字的概念;2.实数的近似数的计算

  七年级数学下册教案 8

  认识三角形教学目标:

  1.知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

  2.过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

  3.情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

  教学重点难点:

  1.重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

  2.难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题.

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形.

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

  第五环节 练习提高

  活动内容:

  1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的`木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的周长 .

  3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

  学生对本节内容归纳为以下两点:

  1.了解了三角形的概念及表示方法;

  2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

  第七环节 探究拓展思考

  1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

  2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看

  第八环节 作业布置

  七年级数学下册教案 9

  教学目标:

  知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

  能力目标:培养学生快速运算的能力.

  情感目标:培养学生耐心细致的学习习惯.

  教学重点与难点:

  多项式除以单项式的法则是本节的重难点.

  教学过程:

  一、复习提问

  1.计算并回答问题:

  (1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

  (3)以上的计算是什么运算?能否叙述这种运算法则?

  2.计算并回答问题:

  (1)3x(x2x+1);(2)4a(a2a+2)

  3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

  说明:希望学生能写出

  2×3=6,(2的3倍是6)

  3×2=6,(3的2倍是6)

  6÷2=3,(6是2的`3倍)

  6÷3=2.(6是3的2倍)

  然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

  二、新课引入

  对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

  1.法则的推导.

  引例:(8x312x2+4x)÷4x=(?)

  分析:

  利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x

  然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

  解:(8x312x2+4x)÷4x

  =8x3÷4x12x2÷4x+4x÷4x

  =2x23x+4x.

  思考题:(8x312x2+4x)÷(4x)=?

  七年级数学下册教案 10

  一、教材分析

  同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。

  二、教学目标

  知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。

  过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。

  情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。

  三、教学重难点

  教学重点:同底数幂乘法运算法则及其应用。

  教学难点:同底数幂乘法运算法则的探索及灵活运用。

  突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。

  四、教学过程设计

  本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。

  第一环节旧知链接

  活动内容:1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)

  2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。

  设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。

  第二环节情境引入

  活动内容:1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的`光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

  2、.计算下列各式:

  (1)102×103;

  (2)105×108;

  (3)10m×10n(m,n都是正整数).你发现了什么?

  3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)

  (学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )

  设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的问题,培养学生数学转化的思想及重视算理的习惯。

  第三环节新知探究,归纳法则

  活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?

  (1)将引例中的各算式改写成乘法的字母算式。

  (2)观察计算结果有什么规律?

  (3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)

  (4)验证你的猜想。

  (5)小结归纳法则。

  (小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)

  同底数幂相乘,底数不变,指数相加。

  am· an=am+n(m,n是正整数)

  设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。

  活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流

  am· an· ap = am+n+p

  法则应用注意事项:(1)等号左边是同底数幂相乘法。

  (2)等号两边的同底相同。

  (3)等号右边的指数等于左边的指数和。

  (4)公式中的底数a可以表示数、字母、单项式、多项式等整式。

  设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。

  第四环节活学活用

  活动内容一:

  例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2

  (3)-x3.x5(4)b2m.b2m+1

  (学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)

  设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。

  活动内容二:

  例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?

  (独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)

  设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。

  第五环节巩固练习

  活动内容:课本随堂练习

  1.计算:

  (1)52×57;(2)7×73×72;

  (3)-x2·x3;(4)(-c)3·(-c)m.

  2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?

  3.解决本节课一开始比邻星到地球的距离问题.

  (小组讨论、交流、展示。自主探究完成。)

  设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。

  第六环节课堂小结

  活动内容:这节课你学到了哪些知识及哪些数学思想?

  (鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)

  设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。

  第七环节布置作业

  习题7.1A组1.B组1、2、3

  设计意图:作业分层布置,因材施教,培养学生的自信心。

  四、教学设计反思:

  1.培养学生数学思想,让学生掌握方法

  在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。

  2.改进教学和评价方式,为学生提供自主探索的机会

  数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。

  七年级数学下册教案 11

  教学目标

  1.使学生受到初步的辩证唯物主义观点的教育。

  2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。

  教学重点和难点

  把比转化成分数。

  教学过程设计

  (一)复习准备

  2.甲数与乙数的比是4∶5。

  ①甲数是乙数的几分之几?

  ②乙数是甲数的几分之几?

  ③甲数是甲、乙总数的几分之几?

  ④乙数是甲、乙总数的几分之几?

  3.出示投影图:

  师:看到此图你能想到什么?

  学生说,老师写在胶片上:

  ①女生与男生的比是3∶2。

  ②男生与女生的比是2∶3。

  4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?

  60÷5=12(吨)

  这种解答的方法,在算术上叫什么方法?

  刚才我们解题的方法叫平均分配的'方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。

  如:你们单元住着18家,每月交的水电费能平均分配吗?

  又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?

  比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)

  (二)学习新课

  1.出示例题。

  例1第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?

  学生读题,分析题中的条件与问题,教师把条件与问题简写出来:

  然后再让学生带着三个问题去思考。

  (1)两种作物一共几份?怎样求?

  (3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?

  分析:

  ①用一个长方形表示全部土地。(画图)

  ②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)

  师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。

  观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?

  (板书)总份数:3+2=5

  3∶2,实质都表示倍数关系。现在这道题能够解决了。

  粮食作物多少公顷?怎么算?

  经济作物多少公顷?怎么算?

  验算:

  ①求总数240+160=400

  ②求比240∶160=3∶2

  答:粮食作物240公顷,经济作物160公顷。

  (附图)

  这道题就是“按比例分配”的问题。解决这个问题的关键是:首先

  多少。

  师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:

  已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。

  2.试一试。

  抓住主要矛盾练习,运用规律解决问题。

  把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?

  总份数是几?怎么算?一中队占几分之几?二中队占几分之几?

  ①总份数4+5=9

  验算:①总棵树20+25=45(棵)

  ②比20∶25=4∶5

  答:一中队得20棵,二中队得25棵。

  (三)巩固反馈

  1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?

  2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?

  3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?

  以上三题只列出主要算式即可。

  4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?

  分析条件、问题以后让学生讨论:

  ①三个班植树的总棵树是几?

  ②题目要求按什么比?人数比是几比几?

  ③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?

  试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)

  5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?

  (这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)

  6.看图编一道按比例分配题解答。

  7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)

  方法1

  8+1=9

  方法2

  5.4÷9=0.6(千克)

  0.6×1=0.6(千克)

  0.6×8=4.8(千克)

  方法3

  方法4

  5.4÷(8+1)=0.6(千克)

  0.6×8=4.8(千克)

  方法5

  解:设氢为x千克。

  5.4-x=8x

  5.4=9x

  x=0.6

  5.4-x

  =5.4-0.6

  =4.8

  方法6

  解:设氧为x千克。

  x=(5.4-x)×8

  x=43.2-8x

  9x=43.2

  x=4.8

  5.4-x

  =5.4-4.8

  =0.6

  以上方法4,5,6要写全过程。

  七年级数学下册教案 12

  教学目标:

  1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。

  2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。

  教学重点:

  理解有序数对的概念,用有序数对来表示位置。

  教学难点:

  理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时

  教学过程

  一、创设问题情境,引入新课

  展示书p105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

  原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

  二、师生共同参于教学活动

  (1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

  师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?

  生:不能,要确定还必须知道“排数”。

  (2)教师书写平面图通知,由学生分组讨论。

  今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。

  师:你们能明白它的意思吗?

  学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。

  师:请同学们思考以下问题:

  ①怎样确定你自己的座位的位置?

  ②排数和列数先后须序对位置有影响吗?

  生:通过讨论,交流后得到以下共识:

  ①可用排数和列数两个不同的数来确定位置。

  ②排数和列数的先后须序对位置有影响。

  (3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

  (4)在生活中还有用有序数对表示一个位置的.例子吗?

  学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。

  例如:人们常用经纬度来表示,地球上的地点

  三、巩固练习

  让学生完成p46的练习。

  四、布置作业

  1、课本习题6,1,1。

  2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?

  1 2 3 4 5 6 7 8

  五、教后反思

  师:谈谈本节课,你有哪些收获?

  由同学交流解决问题,教师设疑为以后的学习奠定基础。

  七年级数学下册教案 13

  一、教学目标

  知识与技能

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  过程与方法

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  情感、态度与价值观

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  教学重点

  数轴的三要素,用数轴上的点表示有理数。

  教学难点

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的`形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点a,b,c,d,e表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

  学习目标(学习重点):

  1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

  2、运用菱形的识别方法进行有关推理。

  补充例题:

  例1.如图,在△abc中,ad是△abc的角平分线。de∥ac交ab于e,df∥ab交ac于f.四边形aedf是菱形吗?说明你的理由。

  例2.如图,平行四边形abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.

  四边形afce是菱形吗?说明理由。

  例3.如图,abcd是矩形纸片,翻折b、d,使bc、ad恰好落在ac上,设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点

  (1)试说明四边形aecg是平行四边形;

  (2)若ab=4cm,bc=3cm,求线段ef的长;

  (3)当矩形两边ab、bc具备怎样的关系时,四边形aecg是菱形。

  课后续助:

  一、填空题

  1、如果四边形abcd是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

  2、如图,d、e、f分别是△abc的边bc、ca、ab上的点,且de∥ba,df∥ ca

  (1)要使四边形afde是菱形,则要增加条件______________________

  (2)要使四边形afde是矩形,则要增加条件______________________

  二、解答题

  1、如图,在□abcd中,若2,判断□abcd是矩形还是菱形?并说明理由。

  2、如图,平行四边形a bcd的两条对角线ac,bd相交于点o,oa=4,ob=3,ab=5.

  (1)ac,bd互相垂直吗?为什么?

  (2)四边形abcd是菱形吗?

  3、如图,在□abcd中,已知adab,abc的平分线交ad于e,ef∥ab交bc于f,试问:四边形abfe是菱形吗?请说明理由。

  4、如图,把一张矩形的纸abcd沿对角线bd折叠,使点c落在点e处,be与ad交于点f.

  ⑴求证:abf≌

  ⑵若将折叠的图形恢复原状,点f与bc边上的点m正好重合,连接dm,试判断四边形bmdf的形状,并说明理由。

  七年级数学下册教案 14

  教学目标

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。

  对话探索设计

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的。

  现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确。

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测。

  结论:两条平行线被第三条直线所截,同位角相等。

  与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的`结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质。

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角。同学们一定能从直觉判断这对内错角也是相等的。也就是说:

  两条平行线被第三条直线所截,内错角相等。它是平行线的第二条性质。

  现在我们来试一试:如何根据性质1说出性质2成立的道理。

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(简单地说:同旁内角互补,两直线平行。)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业

  P25.1、2、3

  〖补充作业

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

  七年级数学下册教案 15

  教学目标

  以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根.

  教学重、难点

  重点:了解平方根的概念,求某些非负数的平方根.

  难点:平方根的意义

  教学过程

  一、提出问题,创设情境.

  问题1、要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?

  问题2、已知圆的面积是16πcm2,求圆的半径长.

  要想解决这些问题,就来学习本节内容.

  二、想一想:

  1、你能解决上面两个问题吗?这两个问题的实质是什么?

  2、25的平方根只有5吗?为什么?

  3、-4有平方根吗?为什么?

  三、知识引入:

  一个正数a的'平方根有两个,它们互为相反数.我们用a表示a的正的平方根,读作

  “根号a”,其中a叫做被开方数.这个根叫做a的算术平方根,另一个负的平方根记为-a.0的平方根是0,0的算术平方根也是0,负数没有平方根.

  求一个数的平方根的运算叫做开平方.

  四、能力、知识、提高

  同学们展示自学结果,老师点拔

  1、情境中的两个问题的实质是已知某数的平方,要求这个数.

  2、概括:如果一个数的平方等于a,那么这个数叫做a的平方根.

  如52=25,(-5)2=25∴25的平方根有两个:5和-5.

  3、任何数的平方都不等于-4,所以-4没有平方根.

  五、知识应用

  1、求下列各数的平方根

  ①49②1.69③(-0.2)2

  2、将下列各数开平方

  ①1②0.09

  七年级数学下册教案 16

  一、教学目标

  1、知识与技能

  (1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  2、过程与方法目标:

  (1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的

  (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;

  (3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程:

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

  2、在组长的组织下进行讨论、交流。(约5分钟)

  3、小组分任务展示。(约25分钟)

  4、达标检测。(约5分钟)

  5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)温故知新:

  前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么

  (二)小组合作交流,探究新知

  1、观察下图,回答问题:(五组完成)

  大象距原点多远两只小狗分别距原点多远

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。

  2、做一做:

  (1)求下列各数的绝对值:(四组完成)-1.5,0,-7,2

  (2)求下列各组数的绝对值:(一组完成)

  (1)4,-4;

  (2)0.8,-0.8;

  从上面的结果你发现了什么

  3、议一议:(八组完成)

  (1)|+2|=,1=|+8.2|=;5

  (2)|-3|=|-0.2|=|-8|=.

  (3)|0|=;

  你能从中发现什么规律

  小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的`绝对值等于什么吗

  (通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1

  (2)求出(1)中各数的绝对值,并比较它们的大小

  (3)你发现了什么

  2、比较下列每组数的大小。

  (1)-1和–5;(五组完成)(2)

  (3)-8和-3(七组完成)

  5和-2.7(六组完成)6五、达标检测:

  1:填空:

  绝对值是10的数有( )

  |+15|=( )|–4|=( )

  |0|=( )|4|=( )

  2:判断

  (1)、绝对值最小的数是0。( )

  (2)、一个数的绝对值一定是正数。( )

  (3)、一个数的绝对值不可能是负数。( )

  (4)、互为相反数的两个数,它们的绝对值一定相等。( )

  (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )

  六、总结:

  1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  2.绝对值的性质:正数的绝对值是它本身;

  负数的绝对值是它的相反数;0的绝对值是0.

  因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0

  3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。

  七、布置作业

  P50页,知识技能第1,2题。

  七年级数学下册教案 17

  教学目标

  1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念

  2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、

  3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、

  重点:

  探索和掌握平行公理及其推论、

  难点:

  对平行线本质属性的理解,用几何语言描述图形的性质、

  教学过程

  一、创设问题情境

  1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

  学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?

  2、教师演示教具、

  顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?

  3、教师组织学生交流并形成共识、

  转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、

  二、平行线定义表示法

  1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、

  直线a与b是平行线,记作“∥”,这里“∥”是平行符号、

  教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、

  2、同一平面内,两条直线的位置关系

  教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系、

  在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、

  三、画图、观察、归纳概括平行公理及平行公理推论

  1、在转动教具木条b的过程中,有几个位置能使b与a平行?

  本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、

  2、用直线和三角尺画平行线、

  已知:直线a,点B,点C、

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  3、通过观察画图、归纳平行公理及推论、

  (1)由学生对照垂线的.第一性质说出画图所得的结论、

  (2)在学生充分交流后,教师板书、

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行、

  (3)比较平行公理和垂线的第一条性质、

  共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的

  不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、

  4、归纳平行公理推论、

  (1)学生直观判定过B点、C点的a的平行线b、c是互相平行、

  (2)从直线b、c产生的过程说明直线b∥直线c、

  (3)学生用三角尺与直尺用平推方验证b∥c、

  (4)师生用数学语言表达这个结论,教师板书、

  结果两条直线都与第三条直线平行,那么这条直线也互相平行、

  结合图形,教师引导学生用符号语言表达平行公理推论:

  如果b∥a,c∥a,那么b∥c、

  (5)简单应用、

  练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、

  本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、

  四、作业:课本P16、7,P17、11、

  七年级数学下册教案 18

  [教学目标]

  1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  [教学重点与难点]

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  [教学设计]

  一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

  观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的`口又怎么变化?

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

  共能组成几对角?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

  几何语言准确表达;

  有公共的顶点O,而且 的两边分别是 两边的反向延长线

  2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交 所形成的角 分类 位置关系 数量关系

  教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2) 邻补角是互补的两个角,互补的两个角是邻补角

  (3) 对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  七年级数学下册教案 19

  教学目标

  1、使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题。

  2、加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答。

  教学难点

  能正确解答分数乘、除法应用题。

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1、花手绢的块数是白手绢的

  2、白手绢块数的正好是花手绢的块数。

  3、花手绢的块数相当于白手绢的

  4、白手绢块数的倍相当于花手绢的块数

  (二)教师提问

  1、求一个数是另一个数的的几分之几用什么方法?

  2、求一个数的几分之几是多少用什么方法?

  3、已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的`特点,巩固解题方法,请同学们和老师一起来做下面一组练习。

  二、讲授新课

  (一)教学例3

  1、课件演示:分数除法应用题

  2、比较。

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析。

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同。

  3、小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几。

  (2)求一个数的几分之几是多少。

  (3)已知一个数的几分之几是多少求这个数。

  4、解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急。

  三、巩固练习

  (一)应用题

  1、一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题。

  2、学校有故事书36本,是科技书的,科技书有多少本?

  3、学校有故事书36本,科技书是故事书的,科技书有多少本?

  (二)补充条件并列式解答。

  一条路长15千米,修了全长的, ?

  (三)选择正确答案

  1、修一条长240千米的公路,修了,修了多少千米?

  2、修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240× 240÷ 150÷240 240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的。十位上的数加上2,就和个位上的数相等。这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习。解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1、六一班有学生45人,其中女生有20人。女生人数占全班的几分之几?

  2、六一班有学生45人,女生占。女生有多少人?

  3、六一班有男生25人,占全班的。全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2、池塘里有12只鸭,鹅的只数是鸭的。池塘里有多少只鹅?

  12× =4(只)

  3、池塘里有4只鹅,正好是鸭的只数的。池塘里有多少只鸭?

  4÷ =12(只)

  七年级数学下册教案 20

  教材分析:

  教学目标:

  知识与技能:

  1、经历探索幂的乘方运算性质过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

  2、了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

  过程与方法:

  1、在探索幂的乘方运算性质的过程中,培养和发展学生学习数学的主动性,提高数学表达能力。

  2、体会幂的意义,领悟数学与现实世界的必然联系,发展实践能力。

  情感、态度与价值观:

  通过积极参与数学学习活动,培养学生积极探索、勇于创新的精神和团结合作的学习习惯;在探索过程中培养和发展学生学习数学的主动性,提高数学表达能力。

  教学重点:

  理解并正确运用幂的乘方的运算性质。

  教学难点:

  幂的乘方法则的探究过程及运用。

  教学方法:

  尝试练习法,讨论法,归纳法。

  教学用具:

  多媒体

  教学过程:

  一、复习旧知:

  1、64表示()个()相乘

  (62)4表示()个()相乘

  a3表示()个()相乘

  (a2)3表示()个()相乘

  【设计意图】在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题,建立新旧知识之间的联系,为新知识的学习奠定理论基础。

  二、创设情境,引入新知

  地球、木星、太阳可以近似低看做是球体。木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?(球体的体积公式是V=4/3∏r3其中v是球的体积,r是球的半径)。

  木星的半径是地球的`10倍,它的体积是地球的103倍!

  太阳的半径是地球的102倍,它的体积是地球的(102)3倍!

  那么,你知道(102)3等于多少吗?

  【活动注意事项】鼓励学生说出自己的想法,对于学生表达好的,教师要及时加以鼓励,以提高学生的学习兴趣。

  【设计意图】从实际问题引入幂的乘方运算,学生在探索这个问题的过程中,将自然体会到幂的乘方运算的必要性,了解数学与现实世界的联系;同时,多媒体的使用可以让学生直观的感受体积扩大的倍数与半径扩大的倍数之间的关系,提高学生的探究兴趣。

  三、运用实例,探究法则

  1、计算下列各式,并说明理由。

  (1)(62)4(a2)3;(am)2;(am)n

  (am)n=am·am·am·am·

  =am+m+m+m+m

  =amn

  2、归纳法则

  幂的乘方,底数()指数()

  【活动注意事项】学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。

  【设计意图】使学生通过特例的考察,逐步一般化,归纳幂的乘方的运算性质,并用幂的意义加以说明。在这一过程中,学生进一步体会了幂的意义,发展了归纳、符号演算等推理能力和有条理的表达能力。

  四、知识应用:

  1、计算下列各题:

  (1)(102)3;(2)(b5)5;(3)(an)3;

  (4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.

  【活动注意事项】学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义。

  【设计意图】这六道题的设置,由数字到字母,有简单题型,有易错题型,有易混淆题型,可以说充分考虑到了学生的学习特点。同时,让学生感受到运算时,不能直接死板硬套公式,而应根据题型灵活处理。

  2、判断题,错误的予以改正。

  (1)a5+a5=2a10()

  (2)(s3)3=x6()

  (3)(-3)2·(-3)4=(-3)6=-36()

  (4)a6·a4=a24()

  (5)[(m-n)3]4-[(m-n)2]6=0()

  【活动注意事项】教师可以要求学生用自己的语言说明错误的原因。

  【设计意图】学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用,将合并同类项、同底数幂的乘法、幂的乘方等知识区分清楚。

  五、小结与反思:

  1、这节课你学到了哪些知识?

  2、你还有哪些想进一步探究的问题?

  【设计意图】通过学生自己的总结反思过程,让学生自觉的体会、感知本节知识,教师及时从中得到反馈,以便及时加以补充和修正课堂内容。

  六、布置作业:

  1、完成课本习题1.2第1、2题。

  2、拓展练习:

  (1)若(x2)n=x8,则m=()

  (2)若[(x3)m]2=x12,则m=( )

  (3)若xm·x2m=2,求x9m的值。

  (4)若a2n=3,求(a3n)4的值。

  (5)已知am=2,an=3,求a2m+3n的值。

  【设计意图】通过不同层次的练习设置,满足不同层次学生的需求。同时,使学生感受到知识的学习是不能死搬硬套的、也不是单纯模仿的。

  板书设计:

【七年级数学下册教案】相关文章:

七年级数学下册教案07-26

七年级数学下册教案06-24

七年级数学下册教案优秀07-29

七年级下册数学教案09-07

小学数学下册教案08-18

七年级数学下册教案精选15篇07-17

七年级数学下册教案(精选15篇)09-11

七年级数学下册教案(15篇)10-05

七年级下册数学教案8篇08-26